Flink CDC 通过订阅数据库的 binlog 或 redo log 来捕获增量变更,并将其转化为流式数据进行处理。在处理过程中,Flink CDC 会保持事件的顺序性,以确保正确地反映数据库中的变更操作。
对于你提到的订单状态的更新操作,Flink CDC 会按照事件发生的顺序来处理它们。也就是说,在 Flink CDC 接收到这些更新操作的时候,它们会按照它们在 binlog 或 redo log 中的顺序被处理。
Flink CDC 会为每个表维护一个增量变更的顺序。当它接收到一个更新操作时,它会将该操作应用到内部状态中的相应记录上。因此,如果用户下了一笔订单、支付了订单,然后取消订单,Flink CDC 会按照这个顺序处理这些操作,并确保最终状态与数据库中的顺序一致。
需要注意的是,Flink CDC 的顺序保证是基于 binlog 或 redo log 的顺序。如果数据库本身使用了多实例、多分片或异步复制等特性,可能会导致实际顺序与 binlog 或 redo log 不完全一致。在这种情况下,你可能需要进行额外的处理来确保顺序的一致性。
另外,Flink CDC 还提供了可靠性保证机制,如开启 Exactly-Once 模式或启用事务支持。这些机制可以帮助进一步保证数据的顺序性和一致性。
总之,Flink CDC 会按照 binlog 或 redo log 中事件发生的顺序来处理更新操作,并确保最终状态与数据库中的顺序一致。通过适当配置和可靠性保证机制,你可以进一步提高数据的顺序性和一致性。