性能测试用户模型(二):用户模型图

本文涉及的产品
性能测试 PTS,5000VUM额度
简介:

性能测试用户模型(一):概述、术语定义、基础数据、压力度量

  用户模型

  用户的行为主要分为两部分来考虑,一是针对一类特定角色的用户,二是针对整个用户群体。通过一组图形来描述用户的行为、操作路径以及系统各部分的使用率,此种方法称之为用户模型(或者系统使用模型)。

  用户模型表示的是系统的使用场景,更准确的说是一个特定时间段的系统使用情况。操作路径是用户模型的核心,通过用户模型,每个人都可以轻易的理解系统是如何被使用的。

  基本图形:

数量或百分比

用户类型

动作类型

同步点(集合点)

选择或数据

条件

循环




退出

分支

合并

  扩展图形

随机顺序访问

  应用示例

  下面以一个在线书店为例,假设我们已经得知以下信息:

  ● 有4种类型的用户:新用户、已注册用户、供应商、管理员。

  ● 所有的用户都从主页开始。

  ● 新用户和已注册用户可以做如下操作:

    ● 通过标题、作者、关键字搜索图书

    ● 添加到购物车

  ● 新用户可以注册成为会员。

  ● 会员可以登录、修改帐户信息、下订单、查看订单状态

  ● 管理员和供应商必须从主页登录,然后进入管理页面。

  ● 管理员可以添加新书、查看订单状态、更改订单状态、取消订单

  ● 供应商可以查看库存和销售的统计报表。

首先为每个类型的用户分别绘制模型图。根据已知数据来制定用户的操作路径、操作比例。

新用户[1]

  解释:假设有100个新用户,其中33个会进行多次搜索,有5个用户会因为没有找到相关书目而退出系统。其他的95个用户都可以找到所需书目并将其放入购物车中,这时会有20个用户没有创建账号直接退出,其他的75个用户都选择了创建账号。之后有45个用户成功提交了订单,另外30个只是保存了订单。最后有60个用户是通过直接关闭浏览器退出系统的,选择注销的只有15个。

会员

  解释:100个会员,有一半是进行买书流程的,还有一半是进入账号进行信息维护和查看订单状态。

管理员

  解释:管理员操作都需要从登录管理页面开始,操作最多的是查看订单状态(50%),其中有一半的订单需要修改,增加书目和取消订单都占25%。

供应商

  解释:供应商也需要从管理员页面登录。供应商用户只能进行查看报表操作,可以选择多种不同类型的报表进行统计,平均每个用户需要查看3种报表。

  确定了各个用户角色的模型后,再根据各用户所占的比例,合并成整体用户群的使用模型。

  解释:从整体考虑,新用户占20%,会员70%,管理员4%,供应商6%。不同类型的用户通过不同颜色来标识,所有的用户都需要从主页开始访问系统。此模型反应了系统的整体使用情况,也即测试场景需要模拟的压力。而测试场景中具体要执行的测试脚本,则主要根据各类型用户各自的用户模型来开发。

  在绘制出模型图后仍然需要不断的同技术人员、业务人员沟通讨论,找出模型中不合理或者遗漏之处,并逐步完善,直到共同确认。甚至是测试结束后,也需要根据系统实际运行环境来不断调整,为后续的测试提供更准确的模型。

  但只依靠模型图仍然不能有效的对压力进行描述,可以发现前文提到的种种基础数据信息目前还未得到使用,如用户操作的间隔时间、页面上需要输入的数据等等。没有模型,这些数据是缺少实用意义的;没有数据,模型图也无法得到应用。

  --------------------------------------------------------------------------------

  [1]分支百分比的两种表示方式:一是各分支的数值之和等于前一个节点的数值(本文采取的方式),二是各分支的数值之和总等于100%。两种方式各有优点:第一种的图形更直观,对观察者来说每一处的压力大小一目了然。第二种对于脚本的实现者来说更容易,实现测试脚本时无需再次换算,而且如果某一个节点有修改,无需考虑后续节点。








====================================分割线================================



最新内容请见作者的GitHub页:http://qaseven.github.io/

相关实践学习
通过性能测试PTS对云服务器ECS进行规格选择与性能压测
本文为您介绍如何利用性能测试PTS对云服务器ECS进行规格选择与性能压测。
目录
相关文章
|
6月前
|
传感器 算法 计算机视觉
基于肤色模型和中值滤波的手部检测算法FPGA实现,包括tb测试文件和MATLAB辅助验证
该内容是关于一个基于肤色模型和中值滤波的手部检测算法的描述,包括算法的运行效果图和所使用的软件版本(matlab2022a, vivado2019.2)。算法分为肤色分割和中值滤波两步,其中肤色模型在YCbCr色彩空间定义,中值滤波用于去除噪声。提供了一段核心程序代码,用于处理图像数据并在FPGA上实现。最终,检测结果输出到"hand.txt"文件。
|
21天前
|
编解码 人工智能 自然语言处理
迈向多语言医疗大模型:大规模预训练语料、开源模型与全面基准测试
【10月更文挑战第23天】Oryx 是一种新型多模态架构,能够灵活处理各种分辨率的图像和视频数据,无需标准化。其核心创新包括任意分辨率编码和动态压缩器模块,适用于从微小图标到长时间视频的多种应用场景。Oryx 在长上下文检索和空间感知数据方面表现出色,并且已开源,为多模态研究提供了强大工具。然而,选择合适的分辨率和压缩率仍需谨慎,以平衡处理效率和识别精度。论文地址:https://www.nature.com/articles/s41467-024-52417-z
41 2
|
1月前
|
测试技术
谈谈【软件测试的基础知识,基础模型】
谈谈【软件测试的基础知识,基础模型】
27 5
|
1月前
|
敏捷开发 测试技术
开发模型(瀑布、螺旋、scrum) 和 测试模型(V、W)、增量和迭代、敏捷(思想)及敏捷开发 scrum
文章详细介绍了软件开发过程中的不同开发模型(瀑布、螺旋、Scrum)和测试模型(V模型、W模型),以及增量和迭代的概念,最后阐述了敏捷思想及其在敏捷开发(如Scrum)中的应用。
65 0
开发模型(瀑布、螺旋、scrum) 和 测试模型(V、W)、增量和迭代、敏捷(思想)及敏捷开发 scrum
|
1月前
|
API
2024-05-14 最新!OpenAI 新模型 GPT-4 omni 简单测试,4o速度确实非常快!而且很便宜!
2024-05-14 最新!OpenAI 新模型 GPT-4 omni 简单测试,4o速度确实非常快!而且很便宜!
41 0
|
1月前
|
机器学习/深度学习 人工智能 并行计算
StableDiffusion-01本地服务器部署服务 10分钟上手 底显存 中等显存机器 加载模型测试效果 附带安装指令 多显卡 2070Super 8GB*2
StableDiffusion-01本地服务器部署服务 10分钟上手 底显存 中等显存机器 加载模型测试效果 附带安装指令 多显卡 2070Super 8GB*2
32 0
|
2月前
|
人工智能 测试技术 PyTorch
AI计算机视觉笔记二十四:YOLOP 训练+测试+模型评估
本文介绍了通过正点原子的ATK-3568了解并实现YOLOP(You Only Look Once for Panoptic Driving Perception)的过程,包括训练、测试、转换为ONNX格式及在ONNX Runtime上的部署。YOLOP由华中科技大学团队于2021年发布,可在Jetson TX2上达到23FPS,实现了目标检测、可行驶区域分割和车道线检测的多任务学习。文章详细记录了环境搭建、训练数据准备、模型转换和测试等步骤,并解决了ONNX转换过程中的问题。
|
3月前
|
机器学习/深度学习 人工智能
高于临床测试3倍准确率!剑桥大学开发AI模型,提前6年预测阿尔茨海默症
【8月更文挑战第9天】剑桥大学研发的人工智能模型在预测阿尔茨海默症方面取得突破,准确率比传统临床测试高三倍,能提前六年预测疾病发生。该模型基于深度学习,利用大量临床及神经影像数据识别生物标志物,预测准确性达80%。这一成果有望促进早期干预,改善患者预后,但仍需更大规模研究验证,并解决隐私与公平性等问题。论文已发表于《The Lancet》子刊。
54 6
|
4月前
|
机器学习/深度学习 存储 数据可视化
谷歌的时间序列预测的基础模型TimesFM详解和对比测试
在本文中,我们将介绍模型架构、训练,并进行实际预测案例研究。将对TimesFM的预测能力进行分析,并将该模型与统计和机器学习模型进行对比。
163 2
|
3月前
|
机器学习/深度学习 数据采集 测试技术
利用Python实现简单的机器学习模型软件测试的艺术与科学:探索自动化测试框架的奥秘
【8月更文挑战第27天】在本文中,我们将一起探索如何通过Python编程语言创建一个简单的机器学习模型。我们将使用scikit-learn库中的线性回归模型作为示例,并通过一个实际的数据集来训练我们的模型。文章将详细解释每一步的过程,包括数据预处理、模型训练和预测结果的评估。最后,我们会用代码块展示整个过程,确保读者能够跟随步骤实践并理解每个阶段的重要性。