基于Field_II_ver_3_24_windows_gcc工具箱的超声波二维成像与三维成像matlab仿真

简介: 基于Field_II_ver_3_24_windows_gcc工具箱的超声波二维成像与三维成像matlab仿真

1.算法理论概述

  1. 1超声波成像的基本原理

    超声波成像是一种通过超声波对物体进行成像的技术。超声波成像的原理是利用超声波在不同组织之间传播速度不同的特点,探测物体内部的结构。超声波成像可以分为二维成像和三维成像两种。二维成像是将超声波探头沿一个方向扫描目标物体,得到一系列沿该方向的回波信号,通过信号处理和图像重建技术,得到物体在该方向上的二维图像。三维成像是通过多次二维成像,在不同方向上获得一系列二维图像,通过图像配准和重建技术,得到物体的三维图像。
    

1.2 Field_II工具箱的基本结构

    Field_II是一种用于超声波成像仿真的工具箱,提供了超声波信号的模拟、探头的设置、信号采集和图像重建等功能。Field_II的基本结构包括以下几个部分:在Field_II中,需要先设置模型的几何形状和声学参数。可以通过导入CAD模型、手动绘制或使用内置的几何图形生成器等方式设置模型。在Field_II中,需要设置探头的几何形状和声学参数。可以通过手动设置或使用内置的探头设置工具等方式设置探头。在Field_II中,可以模拟超声波信号在模型中的传播过程。可以设置信号的中心频率、脉宽、波形等参数。在Field_II中,可以模拟超声波信号在探头上的接收过程。可以设置采样率、增益、滤波等参数。在Field_II中,可以通过信号处理和图像重建技术,得到物体的二维或三维图像。常用的图像重建方法包括线性扫描、并行扫描、逆时针扫描等。

1.3 成像过程的详细实现步骤
基于Field_II工具箱的超声波二维成像和三维成像的实现步骤如下:
首先需要设置物体的几何形状和声学参数。可以通过导入CAD模型、手动绘制或使用内置的几何图形生成器等方式设置模型。然后需要设置探头的几何形状和声学参数。可以通过手动设置或使用内置的探头设置工具等方式设置探头。设置超声波信号的中心频率、脉宽、波形等参数,模拟超声波信号在模型中的传播过程。设置采样率、增益、滤波等参数,模拟超声波信号在探头上的接收过程。通过信号处理和图像重建技术,得到物体的二维或三维图像。常用的图像重建方法包括线性扫描、并行扫描、逆时针扫描等。

具体的实现步骤如下:

二维成像
设置物体的几何形状和声学参数,设置探头的几何形状和声学参数。
设置超声波信号的中心频率、脉宽、波形等参数,模拟超声波信号在模型中的传播过程。
采集超声波信号,设置采样率、增益、滤波等参数,模拟超声波信号在探头上的接收过程。
对接收到的信号进行信号处理,如滤波、去噪等。
通过图像重建技术,如线性扫描、并行扫描、逆时针扫描等,得到物体在该方向上的二维图像。
反复执行2-5步,获得多个方向的二维图像。
对所有二维图像进行图像配准和叠加,得到整个物体的二维成像图像。
三维成像
设置物体的几何形状和声学参数,设置探头的几何形状和声学参数。
设置超声波信号的中心频率、脉宽、波形等参数,模拟超声波信号在模型中的传播过程。
采集超声波信号,设置采样率、增益、滤波等参数,模拟超声波信号在探头上的接收过程。
对接收到的信号进行信号处理,如滤波、去噪等。
通过图像重建技术,如线性扫描、并行扫描、逆时针扫描等,得到物体在该方向上的二维图像。
反复执行2-5步,获得多个方向的二维图像。
对所有二维图像进行图像配准和重建,得到整个物体的三维成像图像。

1.4数学公式的使用

9a7404b9b9e77b9b573045a396156d85_82780907_202308092333000865767882_Expires=1691595780&Signature=qXARQKmRdEQ45U%2FtJkAKCZQZJqc%3D&domain=8.png

1.5成像性能评估

   超声波成像的性能评估通常包括分辨率、灵敏度、噪声等指标。其中,分辨率是指成像系统能够分辨出两个相邻物体之间的最小距离;灵敏度是指成像系统能够探测到的最小信号强度;噪声是指成像系统在信号采集和处理过程中引入的随机误差。

   在使用Field_II进行超声波成像仿真时,可以通过设置不同的参数和模型,评估不同参数对成像性能的影响。例如,可以通过改变信号的中心频率、脉宽、采样率等参数,评估这些参数对成像性能的影响。此外,还可以通过改变模型的几何形状和声学参数,评估不同物体对成像性能的影响。

  常用的成像性能评估方法包括点扩散函数(PSF)、线扫描函数(LSF)、模态响应函数(MRF)等。其中,PSF是指成像系统对一个点源的响应函数;LSF是指成像系统对一条线源的响应函数;MRF是指成像系统对一个模态的响应函数。

   通过对以上性能指标的评估,可以优化超声波成像系统的设计和参数设置,提高成像质量和性能。

    Field_II_ver_3_24_windows_gcc工具箱是一款用于超声波仿真和成像的开源工具箱,可以在Windows操作系统上使用。该工具箱提供了一套完整的超声波仿真和成像方案,包括声场计算、超声波传播、接收信号处理、图像重构等功能。用户可以通过该工具箱,根据自身需求进行定制化的超声波仿真和成像。

  Field_II_ver_3_24_windows_gcc工具箱提供了一套完整的超声波仿真和成像流程,包括声场计算、超声波传播、接收信号处理、图像重构等功能。用户可以使用该工具箱进行二维和三维超声波成像,生成B模式图像、M模式图像、动态图像等。

    Field_II_ver_3_24_windows_gcc工具箱的使用需要一定的超声波物理和计算机编程知识,用户需要了解超声波传播原理、超声波成像原理、MATLAB编程等知识。用户可以通过阅读工具箱提供的文档和示例程序,学习和掌握该工具箱的使用方法。

2.算法运行软件版本
MATLAB2022a

  1. 算法运行效果图预览

2.png
3.png
4.png
5.png
6.png

4.部分核心程序

x0=0;
z0=10/1000;
R=1/1000;
r=R*sqrt(rand(N,1));
seta=2*pi*rand(N,1);
x=r.*cos(seta);
z=r.*sin(seta);

x1=x0+x;
x2=x0+x;
x3=x0+x;
x4=x0+x;
x5=x0+x;
x6=x0+x;
% % x7=x0+x;

z1=z0+z;
z2=z0+z+10/1000;
z3=z0+z+20/1000;
z4=z0+z+30/1000;
z5=z0+z+40/1000;
z6=z0+z+50/1000;
% z7=z0+z+60/1000;

y=zeros(N,1);

f=[x1,y,z1];
g=[x2,y,z2];
h=[x3,y,z3];
j=[x4,y,z4];
k=[x5,y,z5];
l=[x6,y,z6];
% w=[x7,y,z7];


positions=[f;g;j;h;k;l];
amp=randn(6*N,1);
%  Do the calculation
[v,t]=calc_scat_all (Th, Th2, positions, amp, 1);

%  Plot the individual responses
scale=max(max(v));
v=v/scale;


% Transducer parameters
fmc = {};
fmc.cfg.NumXelements =16;
fmc.cfg.ElementXpitchmm =0.5;
fmc.cfg.ElementXwidthmm =0.4;
fmc.cfg.SampleOffset = 50;
fmc.cfg.Velocityms = 5900;
fmc.cfg.FreqMHz = 200;
fmc.cfg.NumSamples =3495;
fmc.cfg.NumTx = 16;
fmc.x = (0:fmc.cfg.NumXelements-1)*fmc.cfg.ElementXpitchmm*1e-3;



fmc.Ascans = [zeros(round(fs*t),size(v,2));v];                  %读取图像信息
fmc.Ascans =fmc.Ascans - repmat(mean(fmc.Ascans),size(fmc.Ascans,1),1);%去均值
fmc.Ascans = hilbert(fmc.Ascans);                        %希尔伯特变换
 fmc.Ascans = reshape(fmc.Ascans,size(fmc.Ascans,1),...   %改变矩阵的维度 64*64*4324
                     size(fmc.Ascans,2)/fmc.cfg.NumTx,...
                     fmc.cfg.NumXelements);
%% Set image domain
zMin = 0;
zMax = 70;
zResolution = 10; % pixels per mm in z direction设置聚焦区域纵向像素
xResolution =12;  % pixels per mm in x direction设置聚焦区域横向像素
domain = image_domain12(fmc, zMin, zMax, zResolution, xResolution);

%% zero pad Ascans
fmc.Ascans = [ zeros(2*domain.min, size(fmc.Ascans,2),size(fmc.Ascans,3));
               fmc.Ascans;
               zeros(domain.max, size(fmc.Ascans,2),size(fmc.Ascans,3))
             ];
fmc.cfg.NumSamples = length(fmc.Ascans);

%% Total focusing method
 tic
image = tfm12(fmc, domain); 
toc

%% Plot image

% transform data to dB scale
normalize = @(x) x./max(x(:));
fun = @(x) 20*log10(normalize(abs(x)));

% dB range in image
dB = [-60,0]; 

X = image.xRange*1000;
Y = image.zRange*1000;
Z = fun(image.image);

figure
imagesc(X,Y,Z,dB)
xlabel('mm')
ylabel('mm')
colormap('jet')
save data.mat X Y Z dB
相关文章
|
3天前
|
传感器 机器学习/深度学习 算法
基于GA遗传算法的WSN网络节点覆盖优化matlab仿真
本研究应用遗传优化算法于无线传感器网络(WSN),优化节点布局与数量,以最小化节点使用而最大化网络覆盖率。MATLAB2022a环境下,算法通过选择、交叉与变异操作,逐步改进节点配置,最终输出收敛曲线展现覆盖率、节点数及适应度值变化。无线传感器网络覆盖优化问题通过数学建模,结合遗传算法,实现目标区域有效覆盖与网络寿命延长。算法设计中,采用二进制编码表示节点状态,适应度函数考量覆盖率与连通性,通过选择、交叉和变异策略迭代优化,直至满足终止条件。
|
1天前
|
算法
基于COPE协议的网络RLNCBR算法matlab性能仿真
摘要: 本研究聚焦于COPE协议与RLNCBR算法(MATLAB仿真),整合随机线性网络编码与背压路由,优化网络编码技术以增强吞吐量与鲁棒性。实验在MATLAB2022a下执行,展示了平均传输次数随接收节点数(N:2-10)变化趋势(P1=...=Pn=0.08,重传间隔100Δt)。COPE协议利用编码机会提高效率,而RLNCBR算法动态调整路径,减少拥塞,提升成功率。数学模型与仿真实验证实算法有效提升网络性能,降低时延与丢包率。[总计239字符]
|
1天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于CNN卷积神经网络的MQAM调制识别matlab仿真
**理论**: 利用CNN自动识别MQAM调制信号,通过学习星座图特征区分16QAM, 64QAM等。CNN从原始数据提取高级特征,优于传统方法。 - **CNN结构**: 自动特征学习机制,适配多种MQAM类型。 - **优化**: 损失函数指导网络参数调整,提升识别准确度。 - **流程**: 大量样本训练+独立测试评估,确保模型泛化能力。 - **展望**: CNN强化无线通信信号处理,未来应用前景广阔。
|
3天前
|
机器学习/深度学习 算法 BI
基于深度学习网络的USB摄像头实时视频采集与手势检测识别matlab仿真
**摘要:** 本文介绍了使用MATLAB2022a实现的基于GoogLeNet的USB摄像头手势识别系统。系统通过摄像头捕获视频,利用深度学习的卷积神经网络进行手势检测与识别。GoogLeNet网络的Inception模块优化了计算效率,避免过拟合。手势检测涉及RPN生成候选框,送入网络进行分类。系统架构包括视频采集、手势检测与识别、以及决策反馈。通过GPU加速和模型优化保证实时性能,应用于智能家居等场景。
|
2月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
2月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
|
2月前
|
Serverless
基于Logistic函数的负荷需求响应(matlab代码)
基于Logistic函数的负荷需求响应(matlab代码)
|
2月前
|
供应链 算法
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
基于分布式优化的多产消者非合作博弈能量共享(Matlab代码)
|
2月前
|
算法 调度
基于多目标粒子群算法冷热电联供综合能源系统运行优化(matlab代码)
基于多目标粒子群算法冷热电联供综合能源系统运行优化(matlab代码)