基于Field_II_ver_3_24_windows_gcc工具箱的超声波二维成像与三维成像matlab仿真

简介: 基于Field_II_ver_3_24_windows_gcc工具箱的超声波二维成像与三维成像matlab仿真

1.算法理论概述

  1. 1超声波成像的基本原理

    超声波成像是一种通过超声波对物体进行成像的技术。超声波成像的原理是利用超声波在不同组织之间传播速度不同的特点,探测物体内部的结构。超声波成像可以分为二维成像和三维成像两种。二维成像是将超声波探头沿一个方向扫描目标物体,得到一系列沿该方向的回波信号,通过信号处理和图像重建技术,得到物体在该方向上的二维图像。三维成像是通过多次二维成像,在不同方向上获得一系列二维图像,通过图像配准和重建技术,得到物体的三维图像。
    

1.2 Field_II工具箱的基本结构

    Field_II是一种用于超声波成像仿真的工具箱,提供了超声波信号的模拟、探头的设置、信号采集和图像重建等功能。Field_II的基本结构包括以下几个部分:在Field_II中,需要先设置模型的几何形状和声学参数。可以通过导入CAD模型、手动绘制或使用内置的几何图形生成器等方式设置模型。在Field_II中,需要设置探头的几何形状和声学参数。可以通过手动设置或使用内置的探头设置工具等方式设置探头。在Field_II中,可以模拟超声波信号在模型中的传播过程。可以设置信号的中心频率、脉宽、波形等参数。在Field_II中,可以模拟超声波信号在探头上的接收过程。可以设置采样率、增益、滤波等参数。在Field_II中,可以通过信号处理和图像重建技术,得到物体的二维或三维图像。常用的图像重建方法包括线性扫描、并行扫描、逆时针扫描等。

1.3 成像过程的详细实现步骤
基于Field_II工具箱的超声波二维成像和三维成像的实现步骤如下:
首先需要设置物体的几何形状和声学参数。可以通过导入CAD模型、手动绘制或使用内置的几何图形生成器等方式设置模型。然后需要设置探头的几何形状和声学参数。可以通过手动设置或使用内置的探头设置工具等方式设置探头。设置超声波信号的中心频率、脉宽、波形等参数,模拟超声波信号在模型中的传播过程。设置采样率、增益、滤波等参数,模拟超声波信号在探头上的接收过程。通过信号处理和图像重建技术,得到物体的二维或三维图像。常用的图像重建方法包括线性扫描、并行扫描、逆时针扫描等。

具体的实现步骤如下:

二维成像
设置物体的几何形状和声学参数,设置探头的几何形状和声学参数。
设置超声波信号的中心频率、脉宽、波形等参数,模拟超声波信号在模型中的传播过程。
采集超声波信号,设置采样率、增益、滤波等参数,模拟超声波信号在探头上的接收过程。
对接收到的信号进行信号处理,如滤波、去噪等。
通过图像重建技术,如线性扫描、并行扫描、逆时针扫描等,得到物体在该方向上的二维图像。
反复执行2-5步,获得多个方向的二维图像。
对所有二维图像进行图像配准和叠加,得到整个物体的二维成像图像。
三维成像
设置物体的几何形状和声学参数,设置探头的几何形状和声学参数。
设置超声波信号的中心频率、脉宽、波形等参数,模拟超声波信号在模型中的传播过程。
采集超声波信号,设置采样率、增益、滤波等参数,模拟超声波信号在探头上的接收过程。
对接收到的信号进行信号处理,如滤波、去噪等。
通过图像重建技术,如线性扫描、并行扫描、逆时针扫描等,得到物体在该方向上的二维图像。
反复执行2-5步,获得多个方向的二维图像。
对所有二维图像进行图像配准和重建,得到整个物体的三维成像图像。

1.4数学公式的使用

9a7404b9b9e77b9b573045a396156d85_82780907_202308092333000865767882_Expires=1691595780&Signature=qXARQKmRdEQ45U%2FtJkAKCZQZJqc%3D&domain=8.png

1.5成像性能评估

   超声波成像的性能评估通常包括分辨率、灵敏度、噪声等指标。其中,分辨率是指成像系统能够分辨出两个相邻物体之间的最小距离;灵敏度是指成像系统能够探测到的最小信号强度;噪声是指成像系统在信号采集和处理过程中引入的随机误差。

   在使用Field_II进行超声波成像仿真时,可以通过设置不同的参数和模型,评估不同参数对成像性能的影响。例如,可以通过改变信号的中心频率、脉宽、采样率等参数,评估这些参数对成像性能的影响。此外,还可以通过改变模型的几何形状和声学参数,评估不同物体对成像性能的影响。

  常用的成像性能评估方法包括点扩散函数(PSF)、线扫描函数(LSF)、模态响应函数(MRF)等。其中,PSF是指成像系统对一个点源的响应函数;LSF是指成像系统对一条线源的响应函数;MRF是指成像系统对一个模态的响应函数。

   通过对以上性能指标的评估,可以优化超声波成像系统的设计和参数设置,提高成像质量和性能。

    Field_II_ver_3_24_windows_gcc工具箱是一款用于超声波仿真和成像的开源工具箱,可以在Windows操作系统上使用。该工具箱提供了一套完整的超声波仿真和成像方案,包括声场计算、超声波传播、接收信号处理、图像重构等功能。用户可以通过该工具箱,根据自身需求进行定制化的超声波仿真和成像。

  Field_II_ver_3_24_windows_gcc工具箱提供了一套完整的超声波仿真和成像流程,包括声场计算、超声波传播、接收信号处理、图像重构等功能。用户可以使用该工具箱进行二维和三维超声波成像,生成B模式图像、M模式图像、动态图像等。

    Field_II_ver_3_24_windows_gcc工具箱的使用需要一定的超声波物理和计算机编程知识,用户需要了解超声波传播原理、超声波成像原理、MATLAB编程等知识。用户可以通过阅读工具箱提供的文档和示例程序,学习和掌握该工具箱的使用方法。

2.算法运行软件版本
MATLAB2022a

  1. 算法运行效果图预览

2.png
3.png
4.png
5.png
6.png

4.部分核心程序

x0=0;
z0=10/1000;
R=1/1000;
r=R*sqrt(rand(N,1));
seta=2*pi*rand(N,1);
x=r.*cos(seta);
z=r.*sin(seta);

x1=x0+x;
x2=x0+x;
x3=x0+x;
x4=x0+x;
x5=x0+x;
x6=x0+x;
% % x7=x0+x;

z1=z0+z;
z2=z0+z+10/1000;
z3=z0+z+20/1000;
z4=z0+z+30/1000;
z5=z0+z+40/1000;
z6=z0+z+50/1000;
% z7=z0+z+60/1000;

y=zeros(N,1);

f=[x1,y,z1];
g=[x2,y,z2];
h=[x3,y,z3];
j=[x4,y,z4];
k=[x5,y,z5];
l=[x6,y,z6];
% w=[x7,y,z7];


positions=[f;g;j;h;k;l];
amp=randn(6*N,1);
%  Do the calculation
[v,t]=calc_scat_all (Th, Th2, positions, amp, 1);

%  Plot the individual responses
scale=max(max(v));
v=v/scale;


% Transducer parameters
fmc = {};
fmc.cfg.NumXelements =16;
fmc.cfg.ElementXpitchmm =0.5;
fmc.cfg.ElementXwidthmm =0.4;
fmc.cfg.SampleOffset = 50;
fmc.cfg.Velocityms = 5900;
fmc.cfg.FreqMHz = 200;
fmc.cfg.NumSamples =3495;
fmc.cfg.NumTx = 16;
fmc.x = (0:fmc.cfg.NumXelements-1)*fmc.cfg.ElementXpitchmm*1e-3;



fmc.Ascans = [zeros(round(fs*t),size(v,2));v];                  %读取图像信息
fmc.Ascans =fmc.Ascans - repmat(mean(fmc.Ascans),size(fmc.Ascans,1),1);%去均值
fmc.Ascans = hilbert(fmc.Ascans);                        %希尔伯特变换
 fmc.Ascans = reshape(fmc.Ascans,size(fmc.Ascans,1),...   %改变矩阵的维度 64*64*4324
                     size(fmc.Ascans,2)/fmc.cfg.NumTx,...
                     fmc.cfg.NumXelements);
%% Set image domain
zMin = 0;
zMax = 70;
zResolution = 10; % pixels per mm in z direction设置聚焦区域纵向像素
xResolution =12;  % pixels per mm in x direction设置聚焦区域横向像素
domain = image_domain12(fmc, zMin, zMax, zResolution, xResolution);

%% zero pad Ascans
fmc.Ascans = [ zeros(2*domain.min, size(fmc.Ascans,2),size(fmc.Ascans,3));
               fmc.Ascans;
               zeros(domain.max, size(fmc.Ascans,2),size(fmc.Ascans,3))
             ];
fmc.cfg.NumSamples = length(fmc.Ascans);

%% Total focusing method
 tic
image = tfm12(fmc, domain); 
toc

%% Plot image

% transform data to dB scale
normalize = @(x) x./max(x(:));
fun = @(x) 20*log10(normalize(abs(x)));

% dB range in image
dB = [-60,0]; 

X = image.xRange*1000;
Y = image.zRange*1000;
Z = fun(image.image);

figure
imagesc(X,Y,Z,dB)
xlabel('mm')
ylabel('mm')
colormap('jet')
save data.mat X Y Z dB
相关文章
|
1天前
|
算法
基于遗传优化算法的风力机位置布局matlab仿真
本项目基于遗传优化算法(GA)进行风力机位置布局的MATLAB仿真,旨在最大化风场发电效率。使用MATLAB2022A版本运行,核心代码通过迭代选择、交叉、变异等操作优化风力机布局。输出包括优化收敛曲线和最佳布局图。遗传算法模拟生物进化机制,通过初始化、选择、交叉、变异和精英保留等步骤,在复杂约束条件下找到最优布局方案,提升风场整体能源产出效率。
|
1天前
|
算法 安全 机器人
基于包围盒的机械臂防碰撞算法matlab仿真
基于包围盒的机械臂防碰撞算法通过构建包围盒来近似表示机械臂及其环境中各实体的空间占用,检测包围盒是否相交以预判并规避潜在碰撞风险。该算法适用于复杂结构对象,通过细分目标对象并逐级检测,确保操作安全。系统采用MATLAB2022a开发,仿真结果显示其有效性。此技术广泛应用于机器人运动规划与控制领域,确保机器人在复杂环境中的安全作业。
|
1天前
|
机器学习/深度学习 数据采集 算法
基于WOA鲸鱼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB 2022a实现时间序列预测,采用CNN-GRU-SAM网络结构,结合鲸鱼优化算法(WOA)优化网络参数。核心代码含操作视频,运行效果无水印。算法通过卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征,全连接层整合输出。数据预处理后,使用WOA迭代优化,最终输出最优预测结果。
|
2天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+turbo译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
本项目基于MATLAB 2022a实现图像传输通信系统的仿真,涵盖QPSK调制解调、扩频技术和Turbo译码。系统适用于无人机图像传输等高要求场景,确保图像质量和传输稳定性。通过仿真,验证了系统在不同信噪比下的性能,展示了图像的接收与恢复效果。核心代码实现了二进制数据到RGB图像的转换与显示,并保存不同条件下的结果。
18 6
|
5天前
|
安全 网络安全 数据安全/隐私保护
Windows Server 2025 Active Directory 重置用户密码
密码重置是管理员日常任务之一,用户因忘记或多次输错密码导致账户锁定时需进行重置。本文介绍在Active Directory服务器上重置密码的三种方法。
|
2月前
|
安全 关系型数据库 MySQL
Windows Server 安装 MySQL 8.0 详细指南
安装 MySQL 需要谨慎,特别注意安全配置和权限管理。根据实际业务需求调整配置,确保数据库的性能和安全。
262 9
|
3月前
|
网络安全 Windows
Windows server 2012R2系统安装远程桌面服务后无法多用户同时登录是什么原因?
【11月更文挑战第15天】本文介绍了在Windows Server 2012 R2中遇到的多用户无法同时登录远程桌面的问题及其解决方法,包括许可模式限制、组策略配置问题、远程桌面服务配置错误以及网络和防火墙问题四个方面的原因分析及对应的解决方案。
228 4
|
3月前
|
监控 安全 网络安全
使用EventLog Analyzer日志分析工具监测 Windows Server 安全威胁
Windows服务器面临多重威胁,包括勒索软件、DoS攻击、内部威胁、恶意软件感染、网络钓鱼、暴力破解、漏洞利用、Web应用攻击及配置错误等。这些威胁严重威胁服务器安全与业务连续性。EventLog Analyzer通过日志管理和威胁分析,有效检测并应对上述威胁,提升服务器安全性,确保服务稳定运行。
|
3月前
|
监控 安全 网络安全
Windows Server管理:配置与管理技巧
Windows Server管理:配置与管理技巧
143 3
|
3月前
|
存储 安全 网络安全
Windows Server 本地安全策略
由于广泛使用及历史上存在的漏洞,Windows服务器成为黑客和恶意行为者的主要攻击目标。这些系统通常存储敏感数据并支持关键服务,因此组织需优先缓解风险,保障业务的完整性和连续性。常见的威胁包括勒索软件、拒绝服务攻击、内部威胁、恶意软件感染等。本地安全策略是Windows操作系统中用于管理计算机本地安全性设置的工具,主要包括用户账户策略、安全选项、安全设置等。实施强大的安全措施,如定期补丁更新、网络分段、入侵检测系统、数据加密等,对于加固Windows服务器至关重要。
139 1