Python实战系列<二> | 70万+条表格信息标记

简介: Python实战系列<二> | 70万+条表格信息标记

大家好,我是欧K~

本期给大家分享《Python实战系列》的第二篇文章:表格信息标记,该系列主要来自粉丝的实际问题,后期会不断更新,希望对你有所帮助,如有疑问或者需要改进的地方可以私信小编。上一期:【Python实战系列<一> | 正则提取数据并绘图
任务描述: 根据基准血压表标记儿童青少年血压表中的血压类型:

  • 舒张压和收缩压任意一个比高血压标准高就输出成高血压
  • 收缩压和舒张压都比高血压早期小就输出成正常
  • 其他就是高血压早期

基准血压表

儿童血压表

🏳️‍🌈 1. 读取数据

df1 = pd.read_excel('./基准血压表.xlsx')


df2 = pd.read_excel('./青少年血压表.xlsx')



🏳️‍🌈 2. 基准血压表身高列数据处理这里需要将每个身高范围处理成两个值:hight_min、hight_max

hight_min = []
hight_max = []
hights = df1['身高(cm)'].values.tolist()
for h in hights:
    h1 = 0
    h2 = 0
    if '<' in h:
        h2 = int(h[1:])
        h1 = h2-50
    elif '>' in h:
        h1 = int(h[1:])
        h2 = h1+50
    else:
        data = h.split('-')
        h1 = int(data[0])
        h2 = int(data[1])
    hight_min.append(h1)
    hight_max.append(h2)
df1['hight_min'] = hight_min
df1['hight_max'] = hight_max



🏳️‍🌈 3. 基准血压表性别列数据处理可以选择处理基准血压表或者青少年血压表,只要两个统一就可以了,这里我们处理基准血压表。

df1['性别'] = df1['性别'].replace({'男':'Boy','女':'Girl'})


🏳️‍🌈 4. 计算青少年血压表血压类型

result_lst = []
for i in range(dff.shape[0]):
    result = '-'
    sexna = df2.loc[i,'sexna']
    age = df2.loc[i,'age']
    sg = df2.loc[i,'身高']
    szy = df2.loc[i,'舒张压']
    ssy = df2.loc[i,'收缩压']
    df_tmp = df1[(df1['性别'] == sexna) & (df1['年龄(岁)'] == age) & (df1['hight_min'] <= sg) & (df1['hight_max'] > sg)]
    if df_tmp.shape[0] == 0:
        result_lst.append(result)
        continue
    if ssy >= df_tmp.iloc[0,4] or szy >= df_tmp.iloc[0,6]:
        result = '高血压'
    elif ssy < df_tmp.iloc[0,4] and szy < df_tmp.iloc[0,6]:
        result = '正常'
    else:
        result = '高血压早期'
    result_lst.append(result)
df2_tmp['结果'] = result_lst

前20000条:


🏳️‍🌈 5. 输出结果

这样70多万数据一会儿就处理完成了,要是硬算的话就麻了

END


以上就是本期为大家整理的全部内容了,喜欢的朋友可以点赞、点在看也可以分享让更多人知道。

相关文章
|
2月前
|
数据处理 索引 Python
用Python实现数据录入、追加、数据校验并生成表格
本示例展示了如何使用Python和Pandas库实现学生期末考试成绩的数据录入、追加和校验,并生成Excel表格。首先通过`pip install pandas openpyxl`安装所需库,然后定义列名、检查并读取现有数据、用户输入数据、数据校验及保存至Excel文件。程序支持成绩范围验证,确保数据准确性。
105 14
|
2月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
1月前
|
测试技术 数据库 Python
Python装饰器实战:打造高效性能计时工具
在数据分析中,处理大规模数据时,分析代码性能至关重要。本文介绍如何使用Python装饰器实现性能计时工具,在不改变现有代码的基础上,方便快速地测试函数执行时间。该方法具有侵入性小、复用性强、灵活度高等优点,有助于快速发现性能瓶颈并优化代码。通过设置循环次数参数,可以更准确地评估函数的平均执行时间,提升开发效率。
106 61
Python装饰器实战:打造高效性能计时工具
|
4天前
|
存储 数据采集 数据库
Python爬虫实战:股票分时数据抓取与存储
Python爬虫实战:股票分时数据抓取与存储
|
28天前
|
运维 Shell 数据库
Python执行Shell命令并获取结果:深入解析与实战
通过以上内容,开发者可以在实际项目中灵活应用Python执行Shell命令,实现各种自动化任务,提高开发和运维效率。
56 20
|
2月前
|
JavaScript API C#
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
52 10
|
2月前
|
小程序 开发者 Python
探索Python编程:从基础到实战
本文将引导你走进Python编程的世界,从基础语法开始,逐步深入到实战项目。我们将一起探讨如何在编程中发挥创意,解决问题,并分享一些实用的技巧和心得。无论你是编程新手还是有一定经验的开发者,这篇文章都将为你提供有价值的参考。让我们一起开启Python编程的探索之旅吧!
65 10
|
2月前
|
数据采集 存储 XML
python实战——使用代理IP批量获取手机类电商数据
本文介绍了如何使用代理IP批量获取华为荣耀Magic7 Pro手机在电商网站的商品数据,包括名称、价格、销量和用户评价等。通过Python实现自动化采集,并存储到本地文件中。使用青果网络的代理IP服务,可以提高数据采集的安全性和效率,确保数据的多样性和准确性。文中详细描述了准备工作、API鉴权、代理授权及获取接口的过程,并提供了代码示例,帮助读者快速上手。手机数据来源为京东(item.jd.com),代理IP资源来自青果网络(qg.net)。
|
3月前
|
算法 Unix 数据库
Python编程入门:从基础到实战
本篇文章将带你进入Python编程的奇妙世界。我们将从最基础的概念开始,逐步深入,最后通过一个实际的项目案例,让你真正体验到Python编程的乐趣和实用性。无论你是编程新手,还是有一定基础的开发者,这篇文章都将为你提供有价值的信息和知识。让我们一起探索Python的世界吧!
|
3月前
|
数据处理 Python
探索Python中的异步编程:从基础到实战
在Python的世界中,“速度”不仅是赛车手的追求。本文将带你领略Python异步编程的魅力,从原理到实践,我们不单单是看代码,更通过实例感受它的威力。你将学会如何用更少的服务器资源做更多的事,就像是在厨房里同时烹饪多道菜而不让任何一道烧焦。准备好了吗?让我们开始这场技术烹饪之旅。

热门文章

最新文章

推荐镜像

更多