Python实战系列<二> | 70万+条表格信息标记

简介: Python实战系列<二> | 70万+条表格信息标记

大家好,我是欧K~

本期给大家分享《Python实战系列》的第二篇文章:表格信息标记,该系列主要来自粉丝的实际问题,后期会不断更新,希望对你有所帮助,如有疑问或者需要改进的地方可以私信小编。上一期:【Python实战系列<一> | 正则提取数据并绘图
任务描述: 根据基准血压表标记儿童青少年血压表中的血压类型:

  • 舒张压和收缩压任意一个比高血压标准高就输出成高血压
  • 收缩压和舒张压都比高血压早期小就输出成正常
  • 其他就是高血压早期

基准血压表

儿童血压表

🏳️‍🌈 1. 读取数据

df1 = pd.read_excel('./基准血压表.xlsx')


df2 = pd.read_excel('./青少年血压表.xlsx')



🏳️‍🌈 2. 基准血压表身高列数据处理这里需要将每个身高范围处理成两个值:hight_min、hight_max

hight_min = []
hight_max = []
hights = df1['身高(cm)'].values.tolist()
for h in hights:
    h1 = 0
    h2 = 0
    if '<' in h:
        h2 = int(h[1:])
        h1 = h2-50
    elif '>' in h:
        h1 = int(h[1:])
        h2 = h1+50
    else:
        data = h.split('-')
        h1 = int(data[0])
        h2 = int(data[1])
    hight_min.append(h1)
    hight_max.append(h2)
df1['hight_min'] = hight_min
df1['hight_max'] = hight_max



🏳️‍🌈 3. 基准血压表性别列数据处理可以选择处理基准血压表或者青少年血压表,只要两个统一就可以了,这里我们处理基准血压表。

df1['性别'] = df1['性别'].replace({'男':'Boy','女':'Girl'})


🏳️‍🌈 4. 计算青少年血压表血压类型

result_lst = []
for i in range(dff.shape[0]):
    result = '-'
    sexna = df2.loc[i,'sexna']
    age = df2.loc[i,'age']
    sg = df2.loc[i,'身高']
    szy = df2.loc[i,'舒张压']
    ssy = df2.loc[i,'收缩压']
    df_tmp = df1[(df1['性别'] == sexna) & (df1['年龄(岁)'] == age) & (df1['hight_min'] <= sg) & (df1['hight_max'] > sg)]
    if df_tmp.shape[0] == 0:
        result_lst.append(result)
        continue
    if ssy >= df_tmp.iloc[0,4] or szy >= df_tmp.iloc[0,6]:
        result = '高血压'
    elif ssy < df_tmp.iloc[0,4] and szy < df_tmp.iloc[0,6]:
        result = '正常'
    else:
        result = '高血压早期'
    result_lst.append(result)
df2_tmp['结果'] = result_lst

前20000条:


🏳️‍🌈 5. 输出结果

这样70多万数据一会儿就处理完成了,要是硬算的话就麻了

END


以上就是本期为大家整理的全部内容了,喜欢的朋友可以点赞、点在看也可以分享让更多人知道。

相关文章
|
25天前
|
数据采集 数据可视化 数据挖掘
Python数据分析实战:Pandas处理结构化数据的核心技巧
在数据驱动时代,结构化数据是分析决策的基础。Python的Pandas库凭借其高效的数据结构和丰富的功能,成为处理结构化数据的利器。本文通过真实场景和代码示例,讲解Pandas的核心操作,包括数据加载、清洗、转换、分析与性能优化,帮助你从数据中提取有价值的洞察,提升数据处理效率。
101 3
|
25天前
|
数据可视化 Linux iOS开发
Python脚本转EXE文件实战指南:从原理到操作全解析
本教程详解如何将Python脚本打包为EXE文件,涵盖PyInstaller、auto-py-to-exe和cx_Freeze三种工具,包含实战案例与常见问题解决方案,助你轻松发布独立运行的Python程序。
318 2
|
25天前
|
存储 监控 API
Python实战:跨平台电商数据聚合系统的技术实现
本文介绍如何通过标准化API调用协议,实现淘宝、京东、拼多多等电商平台的商品数据自动化采集、清洗与存储。内容涵盖技术架构设计、Python代码示例及高阶应用(如价格监控系统),提供可直接落地的技术方案,帮助开发者解决多平台数据同步难题。
|
30天前
|
机器学习/深度学习 算法 文件存储
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
神经架构搜索(NAS)正被广泛应用于大模型及语言/视觉模型设计,如LangVision-LoRA-NAS、Jet-Nemotron等。本文回顾NAS核心技术,解析其自动化设计原理,探讨强化学习、进化算法与梯度方法的应用与差异,揭示NAS在大模型时代的潜力与挑战。
272 6
神经架构搜索NAS详解:三种核心算法原理与Python实战代码
|
12天前
|
机器学习/深度学习 文字识别 Java
Python实现PDF图片OCR识别:从原理到实战的全流程解析
本文详解2025年Python实现扫描PDF文本提取的四大OCR方案(Tesseract、EasyOCR、PaddleOCR、OCRmyPDF),涵盖环境配置、图像预处理、核心识别与性能优化,结合财务票据、古籍数字化等实战场景,助力高效构建自动化文档处理系统。
179 0
|
10天前
|
小程序 PHP 图形学
热门小游戏源码(Python+PHP)下载-微信小程序游戏源码Unity发实战指南​
本文详解如何结合Python、PHP与Unity开发并部署小游戏至微信小程序。涵盖技术选型、Pygame实战、PHP后端对接、Unity转换适配及性能优化,提供从原型到发布的完整指南,助力开发者快速上手并发布游戏。
|
12天前
|
JavaScript 前端开发 安全
【逆向】Python 调用 JS 代码实战:使用 pyexecjs 与 Node.js 无缝衔接
本文介绍了如何使用 Python 的轻量级库 `pyexecjs` 调用 JavaScript 代码,并结合 Node.js 实现完整的执行流程。内容涵盖环境搭建、基本使用、常见问题解决方案及爬虫逆向分析中的实战技巧,帮助开发者在 Python 中高效处理 JS 逻辑。
|
18天前
|
开发工具 Android开发 开发者
用Flet打造跨平台文本编辑器:从零到一的Python实战指南
本文介绍如何使用Flet框架开发一个跨平台、自动保存的文本编辑器,代码不足200行,兼具现代化UI与高效开发体验。
144 0
|
20天前
|
算法 安全 数据安全/隐私保护
Python随机数函数全解析:5个核心工具的实战指南
Python的random模块不仅包含基础的随机数生成函数,还提供了如randint()、choice()、shuffle()和sample()等实用工具,适用于游戏开发、密码学、统计模拟等多个领域。本文深入解析这些函数的用法、底层原理及最佳实践,帮助开发者高效利用随机数,提升代码质量与安全性。
98 0
|
27天前
|
设计模式 缓存 运维
Python装饰器实战场景解析:从原理到应用的10个经典案例
Python装饰器是函数式编程的精华,通过10个实战场景,从日志记录、权限验证到插件系统,全面解析其应用。掌握装饰器,让代码更优雅、灵活,提升开发效率。
89 0

推荐镜像

更多