CNN 卷积神经网络(中)

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: CNN 卷积神经网络(中)

9.5.3 Exercise

若对该神经网络进行改进:

  • Conv2d Layer * 3
  • ReLU Layer * 3
  • MaxPooling Layer * 3
  • Linear Layer * 3

image.png

9.5.4 Code 2

将神经网络改成如下即可:

def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 16, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(16, 32, kernel_size=5)
        self.conv3 = torch.nn.Conv2d(32, 64, kernel_size=3)
        self.pooling = torch.nn.MaxPool2d(2)
        self.fc1 = torch.nn.Linear(64, 32)
        self.fc2 = torch.nn.Linear(32, 16)
        self.fc3 = torch.nn.Linear(16, 10)
    def forward(self, x):
        batch_size = x.size(0)
        x = self.pooling(F.relu(self.conv1(x)))
        x = self.pooling(F.relu(self.conv2(x)))
        x = self.pooling(F.relu(self.conv3(x)))
        x = x.view(batch_size, -1)
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
[1, 300] loss: 0.345
[1, 600] loss: 0.273
[1, 900] loss: 0.069
Accuracy on test set: 91 % [9194/10000]
[2, 300] loss: 0.034
[2, 600] loss: 0.025
[2, 900] loss: 0.020
Accuracy on test set: 96 % [9670/10000]
[3, 300] loss: 0.015
[3, 600] loss: 0.015
[3, 900] loss: 0.014
Accuracy on test set: 97 % [9754/10000]
[4, 300] loss: 0.011
[4, 600] loss: 0.010
[4, 900] loss: 0.011
Accuracy on test set: 98 % [9810/10000]
[5, 300] loss: 0.008
[5, 600] loss: 0.009
[5, 900] loss: 0.009
Accuracy on test set: 98 % [9808/10000]
[6, 300] loss: 0.008
[6, 600] loss: 0.007
[6, 900] loss: 0.008
Accuracy on test set: 98 % [9859/10000]
[7, 300] loss: 0.006
[7, 600] loss: 0.006
[7, 900] loss: 0.007
Accuracy on test set: 98 % [9862/10000]
[8, 300] loss: 0.005
[8, 600] loss: 0.006
[8, 900] loss: 0.006
Accuracy on test set: 97 % [9784/10000]
[9, 300] loss: 0.005
[9, 600] loss: 0.005
[9, 900] loss: 0.006
Accuracy on test set: 98 % [9842/10000]
[10, 300] loss: 0.005
[10, 600] loss: 0.005
[10, 900] loss: 0.004
Accuracy on test set: 98 % [9878/10000]
[91.94, 96.7, 97.54, 98.1, 98.08, 98.59, 98.62, 97.84, 98.42, 98.78]

9.6 GoogLeNet

注意:ConvolutionPoolingSoftmaxOther

若以上图来编写神经网络,则会有许多重复,为减少代码冗余,可以尽量多使用函数/类。

9.6.1 Inception Module

构造神经网络时,有一些超参数是难以选择的,比如卷积核Kernel,应该选择哪一种卷积核比较好用?

GoogLeNet在一个块中将几种卷积核(1 × 1 、 3 × 3 、 5 × 5 、 . . . 1)都使用,然后将其结果罗列到一起,将来通过训练自动找到一种最优的组合。

  • Concatenate:将张量拼接到一块
  • Average Pooling 均值池化:保证输入输出宽高一致(可借助padding和stride)

9.6.2 1 x 1 convolution

为什么要引入 $1 \times 1 $ convolution ?

image.png


image.png

image.png

9.6.3 Implementation of Inception Module

计算方向:由下至上

# 第一列
self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
branch_pool = self.branch_pool(branch_pool)
# 第二列
self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1)
branch1x1 = self.branch1x1(x)
# 第三列
self.branch5x5_1 = nn.Conv2d(in_channels,16, kernel_size=1)
self.branch5x5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)
branch5x5 = self.branch5x5_1(x)
branch5x5 = self.branch5x5_2(branch5x5)
# 第四列
self.branch3x3_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
self.branch3x3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)
self.branch3x3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)
branch3x3 = self.branch3x3_1(x)
branch3x3 = self.branch3x3_2(branch3x3)
branch3x3 = self.branch3x3_3(branch3x3)

再进行拼接:

outputs = [branch1x1, branch5x5, branch3x3, branch_pool]
return torch.cat(outputs, dim=1)

Using Inception Module:

class InceptionA(nn.Module):
    def __init__(self, in_channels):
        super(InceptionA, self).__init__()
        self.branch1x1 = nn.Conv2d(in_channels, 16, kernel_size=1)
        self.branch5x5_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
        self.branch5x5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)
        self.branch3x3_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
        self.branch3x3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)
        self.branch3x3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)
        self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)
    def forward(self, x):
        branch1x1 = self.branch1x1(x)
        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)
        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)
        branch3x3 = self.branch3x3_3(branch3x3)
        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)
        outputs = [branch1x1, branch5x5, branch3x3, branch_pool]
        return torch.cat(outputs, dim=1)
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = nn.Conv2d(88, 20, kernel_size=5)
        self.incep1 = InceptionA(in_channels=10)
        self.incep2 = InceptionA(in_channels=20)
        self.mp = nn.MaxPool2d(2)
        self.fc = nn.Linear(1408, 10)
    def forward(self, x):
        in_size = x.size(0)
        x = F.relu(self.mp(self.conv1(x)))
        x = self.incep1(x)
        x = F.relu(self.mp(self.conv2(x)))
        x = self.incep2(x)
        x = x.view(in_size, -1)
        x = self.fc(x)
        return x

完整代码:

import torch
from torch import nn
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
import torch.nn.functional as F
import torch.optim as optim
import matplotlib.pyplot as plt
# 1、准备数据集
batch_size = 64
transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.1307,), (0.3081,))
])
train_dataset = datasets.MNIST(root='../data/mnist', train=True, download=True, transform=transform)
train_loader = DataLoader(train_dataset, shuffle=True, batch_size=batch_size)
test_dataset = datasets.MNIST(root='../data/mnist', train=False, download=True, transform=transform)
test_loader = DataLoader(test_dataset, shuffle=False, batch_size=batch_size)
# 2、建立模型
# 定义一个Inception类
class InceptionA(nn.Module):
    def __init__(self, in_channels):
        super(InceptionA, self).__init__()
        self.branch1X1 = nn.Conv2d(in_channels, 16, kernel_size=1)
        # 设置padding保证 宽 高 不变
        self.branch5X5_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
        self.branch5X5_2 = nn.Conv2d(16, 24, kernel_size=5, padding=2)
        self.branch3X3_1 = nn.Conv2d(in_channels, 16, kernel_size=1)
        self.branch3X3_2 = nn.Conv2d(16, 24, kernel_size=3, padding=1)
        self.branch3X3_3 = nn.Conv2d(24, 24, kernel_size=3, padding=1)
        self.branch_pool = nn.Conv2d(in_channels, 24, kernel_size=1)
    def forward(self, x):
        branch1X1 = self.branch1X1(x)
        branch5X5 = self.branch5X5_1(x)
        branch5X5 = self.branch5X5_2(branch5X5)
        branch3X3 = self.branch3X3_1(x)
        branch3X3 = self.branch3X3_2(branch3X3)
        branch3X3 = self.branch3X3_3(branch3X3)
        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)
        outputs = [branch1X1, branch5X5, branch3X3, branch_pool]
        # (b, c, w, h),dim=1 以第一个维度channel来拼接
        return torch.cat(outputs, dim=1)
# 定义模型
class Net(nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = nn.Conv2d(1, 10, kernel_size=5)
        # 88 = 24*3 + 16
        self.conv2 = nn.Conv2d(88, 20, kernel_size=5)
        self.incep1 = InceptionA(in_channels=10)
        self.incep2 = InceptionA(in_channels=20)
        self.mp = nn.MaxPool2d(2)
        # 确定输出张量的尺寸
        # 在定义时先不定义fc层,随便选取一个输入,经过模型后查看其尺寸
        # 在init函数中把fc层去掉,forward函数中把最后两行去掉,确定输出的尺寸后再定义Lear层的大小
        self.fc = nn.Linear(1408, 10)
    def forward(self, x):
        in_size = x.size(0)
        # 1 --> 10
        x = F.relu(self.mp(self.conv1(x)))
        # 10 --> 88
        x = self.incep1(x)
        # 88 --> 20
        x = F.relu(self.mp(self.conv2(x)))
        # 20 --> 88
        x = self.incep2(x)
        x = x.view(in_size, -1)
        x = self.fc(x)
        return x
model = Net()
# 将模型迁移到GPU上运行
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model.to(device)
# 3、建立损失函数和优化器
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
# 4、定义训练函数
def train(epoch):
    running_loss = 0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        # 将计算的张量迁移到GPU上
        inputs, target = inputs.to(device), target.to(device)
        optimizer.zero_grad()
        # 前馈 反馈 更新
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()
        running_loss += loss.item()
        if batch_idx % 300 == 299:
            print('[%d, %3d] loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
            running_loss = 0
# 5、定义测试函数
accuracy = []
def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            images, labels = data
            # 将测试中的张量迁移到GPU上
            images, labels = images.to(device), labels.to(device)
            outputs = model(images)
            _, predicted = torch.max(outputs.data, dim=1)
            total += labels.size(0)
            # 得出其中相等元素的个数
            correct += (predicted == labels).sum().item()
    print('Accuracy on test set: %d %% [%d/%d]' % (100 * correct / total, correct, total))
    accuracy.append(100 * correct / total)
if __name__ == '__main__':
    for epoch in range(10):
        train(epoch)
        test()
    print(accuracy)
    plt.plot(range(10), accuracy)
    plt.xlabel("Epoch")
    plt.ylabel("Accuracy")
    plt.grid()  # 表格
    plt.show()
[1, 300] loss: 0.836
[1, 600] loss: 0.196
[1, 900] loss: 0.145
Accuracy on test set: 96 % [9690/10000]
[2, 300] loss: 0.106
[2, 600] loss: 0.099
[2, 900] loss: 0.091
Accuracy on test set: 97 % [9785/10000]
[3, 300] loss: 0.075
[3, 600] loss: 0.078
[3, 900] loss: 0.071
Accuracy on test set: 98 % [9831/10000]
[4, 300] loss: 0.064
[4, 600] loss: 0.067
[4, 900] loss: 0.061
Accuracy on test set: 98 % [9845/10000]
[5, 300] loss: 0.057
[5, 600] loss: 0.058
[5, 900] loss: 0.052
Accuracy on test set: 98 % [9846/10000]
[6, 300] loss: 0.051
[6, 600] loss: 0.049
[6, 900] loss: 0.050
Accuracy on test set: 98 % [9852/10000]
[7, 300] loss: 0.047
[7, 600] loss: 0.043
[7, 900] loss: 0.045
Accuracy on test set: 98 % [9848/10000]
[8, 300] loss: 0.039
[8, 600] loss: 0.044
[8, 900] loss: 0.042
Accuracy on test set: 98 % [9871/10000]
[9, 300] loss: 0.041
[9, 600] loss: 0.034
[9, 900] loss: 0.041
Accuracy on test set: 98 % [9866/10000]
[10, 300] loss: 0.032
[10, 600] loss: 0.038
[10, 900] loss: 0.037
Accuracy on test set: 98 % [9881/10000]
[96.9, 97.85, 98.31, 98.45, 98.46, 98.52, 98.48, 98.71, 98.66, 98.81]

相关实践学习
【AI破次元壁合照】少年白马醉春风,函数计算一键部署AI绘画平台
本次实验基于阿里云函数计算产品能力开发AI绘画平台,可让您实现“破次元壁”与角色合照,为角色换背景效果,用AI绘图技术绘出属于自己的少年江湖。
从 0 入门函数计算
在函数计算的架构中,开发者只需要编写业务代码,并监控业务运行情况就可以了。这将开发者从繁重的运维工作中解放出来,将精力投入到更有意义的开发任务上。
目录
相关文章
|
13天前
|
机器学习/深度学习 人工智能 算法
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic带你深入卷积神经网络(CNN)核心技术,从生物启发到数学原理,详解ResNet、注意力机制与模型优化,探索视觉智能的演进之路。
222 11
|
24天前
|
机器学习/深度学习 传感器 数据采集
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)
139 0
|
27天前
|
机器学习/深度学习 传感器 数据采集
【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究(Matlab代码实现)
【故障识别】基于CNN-SVM卷积神经网络结合支持向量机的数据分类预测研究(Matlab代码实现)
103 0
|
2月前
|
机器学习/深度学习 数据采集 TensorFlow
基于CNN-GRU-Attention混合神经网络的负荷预测方法(Python代码实现)
基于CNN-GRU-Attention混合神经网络的负荷预测方法(Python代码实现)
|
3月前
|
机器学习/深度学习 人工智能 PyTorch
零基础入门CNN:聚AI卷积神经网络核心原理与工业级实战指南
卷积神经网络(CNN)通过局部感知和权值共享两大特性,成为计算机视觉的核心技术。本文详解CNN的卷积操作、架构设计、超参数调优及感受野计算,结合代码示例展示其在图像分类、目标检测等领域的应用价值。
180 7
|
4月前
|
机器学习/深度学习 数据采集 监控
基于CNN卷积神经网络和GEI步态能量提取的步态识别算法matlab仿真,对比不同角度下的步态识别性能
本项目基于CNN卷积神经网络与GEI步态能量提取技术,实现高效步态识别。算法使用不同角度(0°、45°、90°)的步态数据库进行训练与测试,评估模型在多角度下的识别性能。核心流程包括步态图像采集、GEI特征提取、数据预处理及CNN模型训练与评估。通过ReLU等激活函数引入非线性,提升模型表达能力。项目代码兼容Matlab2022a/2024b,提供完整中文注释与操作视频,助力研究与应用开发。
|
4月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于WOA鲸鱼优化的TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本内容包含时间序列预测算法的相关资料,涵盖以下几个方面:1. 算法运行效果预览(无水印);2. 运行环境为Matlab 2022a/2024b;3. 提供部分核心程序,完整版含中文注释及操作视频;4. 理论概述:结合时间卷积神经网络(TCN)与鲸鱼优化算法(WOA),优化TCN超参数以提升非线性时间序列预测性能。通过因果卷积层与残差连接构建TCN模型,并用WOA调整卷积核大小、层数等参数,实现精准预测。适用于金融、气象等领域决策支持。
|
9月前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
380 10
|
11月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)
深入理解深度学习中的卷积神经网络(CNN)
470 10
|
10月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##

热门文章

最新文章