30%Token就能实现SOTA性能,华为诺亚轻量目标检测器Focus-DETR效率倍增

简介: 30%Token就能实现SOTA性能,华为诺亚轻量目标检测器Focus-DETR效率倍增



目前 DETR 类模型已经成为了目标检测的一个主流范式。但 DETR 算法模型复杂度高,推理速度低,严重影响了高准确度目标检测模型在端侧设备的部署,加大了学术研究和产业应用之间的鸿沟。

来自华为诺亚、华中科技大学的研究者们设计了一种新型的 DETR 轻量化模型 Focus-DETR 来解决这个难题。


为实现模型性能和计算资源消耗、显存消耗、推理时延之间的平衡,Focus-DETR 利用精细设计的前景特征选择策略,实现了目标检测高相关特征的精确筛选;继而,Focus-DETR 进一步提出了针对筛选后特征的注意力增强机制,来弥补 Deformable attention 远距离信息交互的缺失。相比业界全输入 SOTA 模型, AP 降低 0.5 以内,计算量降低 45%,FPS 提高 41%,并在多个 DETR-like 模型中进行了适配。

作者对多个 DETR 类检测器的 GFLOPs 和时延进行了对比分析,如图 1 所示。从图中发现,在 Deformable-DETR 和 DINO 中,encoder 的计算量分别是 decoder 计算量的 8.8 倍和 7 倍。同时,encoder 的时延大概是 decoder 时延的 4~8 倍。这表明,提升 encoder 的效率至关重要。

图 1:多个 DETR 类检测器的计算量和时延对比分析

网络结构

Focus-DETR 包括一个 backbone,一个由 dual-attention 组成的 encoder 和一个 decoder。前景选择器(Foreground Token Selector)在 backbone 和 encoder 之间,是一个基于跨多尺度特征的自顶向下评分调制,用来确定一个 token 是否属于前景。Dual attention 模块通过多类别评分机制,选择更细粒度的目标 token,然后将其输入到一个自注意模块来弥补 token 交互信息的缺失。

图 2 :Focus-DETR 整体网络结构
计算量降低:前景筛选策略

目前已经有一些对于前景 token 进行剪枝提升性能的方法。例如,Sparse DETR(ICLR2022)提出采用 decoder 的 DAM(decoder attention map)作为监督信息。然而作者发现,如图 3 所示,Sparse DETR 筛选的 token 并不都是前景区域。作者认为,这是由于 Sparse DETR 使用 DAM 来监督前景 token 导致的,DAM 会在训练的时候引入误差。而 Focus-DETR 使用 ground truth(boxes 和 label)来监督前景的 token 的筛选。

图 3:Focus-DETR 和 Sparse DETR 在不同 feature map 上保留的 token 对比
为了更好地训练前景筛选器,作者优化了 FCOS 的前背景标签分配策略,如图 4 所示。作者首先为不同特征映射的包围框设置了一个大小范围。与传统的多尺度特征标签分配方法不同,它允许相邻两个特征尺度之间的范围重叠,以增强边界附近的预测能力。对每个拥有步长 的特征 ,其中代表多尺度特征的层级序号, 代表在二维特征图上的位置坐标,作者定义该特征在原图上的映射位置为 ,那么 因此 特征所对应的标签应该为:


其中 代表坐标和真值框中心之间的最大棋盘距离,表真值目标框, 分别代表被第层特征图预测的目标的尺度的最大值和最小值,由于尺度重叠设置,

图 4. 前背景标签分配可视化
此外,来自不同特征映射的特征选择的差异也被忽略,这限制了从最合适的分辨率选择特征的潜力。为弥补这一差距,Focus-DETR 构造了基于多尺度 feature map 的自顶向下的评分调制模块,如图 5 所示。为了充分利用多尺度特征图之间的语义关联,作者首先使用多层感知器 (MLP) 模块来预测每个特征图中的多类别语义得分。考虑到高层语义特征,低层语义特征包含更丰富的语义信息,作者利用高层 feature map 的 token 重要性得分,作为补充信息来调制低层 feature map 的预测结果。

图 5:top-down 前景筛选评分调制策略
细粒度特征增强策略
在依靠前期设计的前景筛选器得到较为准确的前景特征后,Focus-DETR 使用一种有效的操作来获得更为细粒度的特征,利用这些细粒度特征以获得更好的检测性能。直观地说,作者假设在这个场景中引入更细粒度的类别信息将是有益的。基于这一动机,作者提出了一种新的注意力机制,并结合前景特征选择,以更好地结合利用细粒度特征和前景特征。

如图 2 所示,为了避免对背景 token 进行冗余的计算,作者采用了一种同时考虑位置信息和类别语义信息的堆叠策略。具体来说,预测器 (・) 计算出的前景评分和类别评分的乘积将作为作者最终的标准来确定注意力计算中涉及的细粒度特征,即:

其中分别代表前景得分和类别概率。

与两阶段 Deformable DETR 的 query 选择策略不同,Focus-DETR 的多类别概率不包括背景类别 (∅)。该模块可以被视为一个 self-attention ,对细粒度特征进行增强计算。然后,已增强的特征将被 scatter 回原始的前景特征并对其进行更新。

实验结果
主要结果
如表一所示,作者将 Focus-DETR 在 COCO 验证集上和其他模型的性能进行比较。可以发现同样基于 DINO,Focus-DETR 仅使用 30% token 的情况下,超过 Sparse DETR 2.2 个 AP。相比原始 DINO,仅损失 0.5 个 AP,但是计算量降低 45%,推理速度提升 40.8%。

表 1:总体对比实验结果
模型效能分析
在图 6 中,从不同模型的精度和计算量之间的关系来看,Focus-DETR 在精度和计算复杂度之间达到了最好的平衡。整体来看对比其他模型,获得了 SOTA 的性能。

图 6 不同模型测试精度和计算复杂度之间的关联分析
消融实验
如表 2 所示,作者针对模型设计进行消融实验,以验证作者提出的算法的有效性。

表 2 本研究提出的前景特征剪枝策略和细粒度特征自注意力增强模块对实验性能的影响
1. 前景特征选择策略的影响

直接使用前景得分预测 AP 为 47.8,增加 label assignment 策略生成的标签作为监督,AP 提升 1.0。增加自上而下的调制策略,能够提升多尺度特征图之间的交互,AP 提升 0.4。这表明提出的策略对于提升精度是非常有效的。如图 7 可视化可以发现,Focus-DETR 可以精确地选择多尺度特征上的前景 token。并且可以发现,在不同尺度的特征度之间,可以检测的物体存在重叠,这正是因为 Focus-DETR 使用了交叠的设置导致的。

图 7 多尺度特征保留的 token
2. 自上而下的评分调制策略的影响

表 3. 多尺度特征图前景评分的关联方法,作者尝试自顶向下和自底向上的调制。
作者对比了自上而下的调制策略和自下而上的调制策略的影响,对比结果可以发现,作者提出的自上而下的调制策略可以获得更好的性能。

3. 前景保留比率对实验性能的影响

表 4.Focus-DETR、Sparse DETR 和 DINO+Sparse DETR 保留前景 token 的比例
作者对比了不同的剪枝比例的性能,从实验结果可以发现,Focus-DETR 在相同的剪枝比例情况下,均获得了更优的结果。

总结
Focus-DETR 仅利用 30% 的前景 token 便实现了近似的性能,在计算效率和模型精度之间取得了更好的权衡。Focus-DETR 的核心组件是一种基于多层次的语义特征的前景 token 选择器,同时考虑了位置和语义信息。Focus-DETR 通过精确地选择前景和细粒度特征,并且对细粒度特征进行语义增强,使得模型复杂度和精度实现更好平衡。

相关文章
|
监控 安全 Linux
在Linux中,如何进行网络资源的优先级管理?
在Linux中,如何进行网络资源的优先级管理?
|
存储 缓存 开发者
深入理解操作系统的内存管理机制
【5月更文挑战第20天】 在现代计算机系统中,操作系统扮演着至关重要的角色,它负责协调和管理硬件资源。内存管理是操作系统的核心职能之一,关系到系统性能和稳定性。本文将深入剖析操作系统内存管理的关键技术,包括虚拟内存、分页机制、内存分配策略等,旨在为读者提供一个清晰的理解框架。通过对这些技术的探讨,我们能够更好地认识到操作系统如何高效地利用有限的物理内存,满足多任务并行处理的需求。
|
6天前
|
人工智能 自然语言处理 Shell
🦞 如何在 Moltbot 配置阿里云百炼 API
本教程指导用户在开源AI助手Clawdbot中集成阿里云百炼API,涵盖安装Clawdbot、获取百炼API Key、配置环境变量与模型参数、验证调用等完整流程,支持Qwen3-max thinking (Qwen3-Max-2026-01-23)/Qwen - Plus等主流模型,助力本地化智能自动化。
🦞 如何在 Moltbot 配置阿里云百炼 API
|
4天前
|
人工智能 JavaScript 应用服务中间件
零门槛部署本地AI助手:Windows系统Moltbot(Clawdbot)保姆级教程
Moltbot(原Clawdbot)是一款功能全面的智能体AI助手,不仅能通过聊天互动响应需求,还具备“动手”和“跑腿”能力——“手”可读写本地文件、执行代码、操控命令行,“脚”能联网搜索、访问网页并分析内容,“大脑”则可接入Qwen、OpenAI等云端API,或利用本地GPU运行模型。本教程专为Windows系统用户打造,从环境搭建到问题排查,详细拆解全流程,即使无技术基础也能顺利部署本地AI助理。
5658 13
|
10天前
|
人工智能 API 开发者
Claude Code 国内保姆级使用指南:实测 GLM-4.7 与 Claude Opus 4.5 全方案解
Claude Code是Anthropic推出的编程AI代理工具。2026年国内开发者可通过配置`ANTHROPIC_BASE_URL`实现本地化接入:①极速平替——用Qwen Code v0.5.0或GLM-4.7,毫秒响应,适合日常编码;②满血原版——经灵芽API中转调用Claude Opus 4.5,胜任复杂架构与深度推理。
7015 11
|
4天前
|
人工智能 JavaScript API
零门槛部署本地 AI 助手:Clawdbot/Meltbot 部署深度保姆级教程
Clawdbot(Moltbot)是一款智能体AI助手,具备“手”(读写文件、执行代码)、“脚”(联网搜索、分析网页)和“脑”(接入Qwen/OpenAI等API或本地GPU模型)。本指南详解Windows下从Node.js环境搭建、一键安装到Token配置的全流程,助你快速部署本地AI助理。(239字)
3521 19
|
2天前
|
人工智能 机器人 Linux
保姆级 OpenClaw (原 Clawdbot)飞书对接教程 手把手教你搭建 AI 助手
OpenClaw(原Clawdbot)是一款开源本地AI智能体,支持飞书等多平台对接。本教程手把手教你Linux下部署,实现数据私有、系统控制、网页浏览与代码编写,全程保姆级操作,240字内搞定专属AI助手搭建!
2779 7
保姆级 OpenClaw (原 Clawdbot)飞书对接教程 手把手教你搭建 AI 助手
|
5天前
|
人工智能 安全 Shell
在 Moltbot (Clawdbot) 里配置调用阿里云百炼 API 完整教程
Moltbot(原Clawdbot)是一款开源AI个人助手,支持通过自然语言控制设备、处理自动化任务,兼容Qwen、Claude、GPT等主流大语言模型。若需在Moltbot中调用阿里云百炼提供的模型能力(如通义千问3系列),需完成API配置、环境变量设置、配置文件编辑等步骤。本文将严格遵循原教程逻辑,用通俗易懂的语言拆解完整流程,涵盖前置条件、安装部署、API获取、配置验证等核心环节,确保不改变原意且无营销表述。
2128 6
|
5天前
|
机器人 API 数据安全/隐私保护
只需3步,无影云电脑一键部署Moltbot(Clawdbot)
本指南详解Moltbot(Clawdbot)部署全流程:一、购买无影云电脑Moltbot专属套餐(含2000核时);二、下载客户端并配置百炼API Key、钉钉APP KEY及QQ通道;三、验证钉钉/群聊交互。支持多端,7×24运行可关闭休眠。
3455 7