4、实验
4.1、消融实验
1、Decoupled head
2、Segmentation labels (poor effect)
当在数据增强期间处理旋转的标签时,在没有分割信息的情况下,在旋转后获得原始标签框的四个坐标角点,并绘制一个不倾斜并穿过四个点的框作为要使用的标签。这可能包含更多无效的背景信息。
因此,当在MS COCO2017上训练模型时,尝试通过使用分割标签来生成边界框,以便图像旋转后的标签仍然保持高精度。当启用数据扩充并且损失进入稳定下降阶段时,使用分段标签可以显著增加2%-3%AP。
由于数据扩充在训练的最后阶段被设置为禁用,因此所有标签都变得更加准确。此外,即使不使用分割标签,最终精度也仅降低约0.04%AP。
3、损失函数
4.2 为边缘计算设备设计的技巧
1、Input size adaptation
2、多进程和多线程的计算体系结构
作为一个包含预处理、模型输入和后处理的整体检测过程,这三个部分可以在实际部署中拆分,并分配给多个进程和线程进行计算。在测试中,使用拆分架构可以实现大约8%-14%的FPS增长。
4.3、SOTA对比
4.4、总结
本文提出了一种边缘实时和Anchor-Free单阶段检测器EdgeYOLO,其一些代表性结果如图5和图6所示。如实验所示,EdgeYOLO可以在边缘设备上以高精度实时运行,其检测小目标的能力得到了进一步提高。
由于EdgeYOLO使用Anchor-Free结构,因此设计复杂性和计算复杂性降低,并且在边缘设备上的部署更加友好。
此外,作者相信该框架可以扩展到其他像素级识别任务,例如实例分割。在未来的工作中,将进一步提高框架对小目标的检测精度,并进行有效优化的探索。
5、参考
[1].EdgeYOLO: An Edge-Real-Time Object Detector.