代理辅助多任务优化算法(Matlab代码实现)

简介: 代理辅助多任务优化算法(Matlab代码实现)

💥1 概述

进化算法(EA)已被应用,具有解决广泛应用的强大能力,但它一次可以解决一个问题。为了提高效率,进化计算领域的一种新兴研究范式,提出了进化多任务(EMT)。EMT同时解决多个优化任务。EMT的有效性是通过任务间知识转移来改进每个任务的解决方案。多因素进化算法(MFEAs)是第一种解决多任务优化问题的算法。然而,它往往受到负面知识转移问题的影响。为了解决这个问题并提高MFEA的性能,我们建议构建一个代理模型,作为在MFEA中同时优化的辅助任务和目标任务。根据所提方法,代理模型是每个对应目标任务的相关任务,以增强任务间的积极知识转移。此外,代理模型可以减少局部最优的数量,并且结构简单。在基准和真实水库洪水发电问题上进行了实验,以检验所提算法的性能。对几个广泛使用的测试问题的比较实验表明,代理模型作为辅助任务可以显着提高MFEA的性能。


📚2 运行结果

部分代码:

% UBA=32.728;
% LBA=-32.728;
% A_x=[-32.728:0.1:32.728];
% A_z=-20*exp(-0.2*sqrt((1/1)*(A_x.^2)))-exp((1/1)*(cos(2*pi.*A_x)))+exp(1)+20;                %原函数
% A_x=sort(A_x);
% hold on;
% plot(A_x,A_z,'r-','linewidth',2);
 %Sphere函数
UBS=100;
LBS=-100;
S_x=[-100:100];
S_z=S_x.^2;                %原函数
S_x=sort(S_x);
hold on;
plot(S_x,S_z,'r-','linewidth',1.5);
% %Rosenbrock
% UBS=10;
% LBS=-5;
% r_x=-5:0.1:10;
% r_z=100*r_x.^4+(r_x-1).^2;              %原函数
% r_x=sort(r_x);
% hold on;
% plot(r_x,r_z,'r-','linewidth',1.5);
UBR=5.12;
LBR=-5.12;
%  R_x=[-5.12:0.05:5.12];
% R_z=10+(R_x)'.^2-10*cos(2*pi.*(R_x)')+(R_x)'.^2;              %原函数
x=rand(205,1);
x=sort(x);
R_x=LBR+x*(UBR-LBR);
R_z=10+(R_x)'.^2-10*cos(2*pi.*(R_x)')+(R_x)'.^2;              %原函数
% x=sort(x);
figure
plot(x,R_z,'b-','linewidth',1.5,'MarkerIndices',1:5:length(R_z));
xlabel('x');
ylabel('y');
axis([0 1 0 70]);
result1_SAMTO(1,:)=85*44-mean(SAMTO_new(1).Toall_BestFitss(2:4:20,2:21));
result1_SAMTO(2,:)=85*145-mean(SAMTO_new(1).Toall_BestFitss(4:4:20,2:21));
result2_SAMTO(1,:)=85*44-SAMTO_new(2).Toall_BestFitss(1,:);
result2_SAMTO(2,:)=85*97-SAMTO_new(2).Toall_BestFitss(2,:);
result3_SAMTO(1,:)=85*97-SAMTO_new(3).Toall_BestFitss(1,:);
result3_SAMTO(2,:)=85*145-SAMTO_new(3).Toall_BestFitss(2,:);
% ST2T1_2=[global_precent,local_precent(:,1801:3000)];
% save 'ST2T1_2.mat' 'ST2T1_2';
st1t1=mean(ST1T1_2);   %Rastrigin function positive transfer to Griewank
ST1T1=[];
for i=1:150:3000
    ST1T1=[ST1T1,mean(st1t1(i:i+149))];
end
plot(ST1T1,'o-','color',[0.8547,0.33,0.10],...
    'linewidth',2,'MarkerSize',6,'MarkerIndices',1:2:length(ST1T1));
hold on
st1t2=mean(ST1T2_2);  %Greiwank function positive transfer to Griewank
ST1T2=[];
for i=1:150:3000
    ST1T2=[ST1T2,mean(st1t2(i:i+149))];
end
plot(ST1T2,'*-g','linewidth',2,'MarkerSize',6,'MarkerIndices',1:2:length(ST1T2));
hold on
st2t1=mean(ST2T1_2);
ST2T1=[];
for i=1:150:3000
    ST2T1=[ST2T1,mean(st2t1(i:i+149))];
end
plot(ST2T1,'c->','linewidth',2,'MarkerSize',6,'MarkerIndices',1:2:length(ST2T1));
hold on
st2t2=mean(ST2T2_2);
ST2T2=[];
for i=1:150:3000
   ST2T2=[ST2T2,mean(st2t2(i:i+149))];
end
plot(ST2T2,'m-<','linewidth',2,'MarkerSize',6,'MarkerIndices',1:2:length(ST2T2));
hold on
t1t2=mean(T1T2_2);
T1T2=[];
for i=1:150:3000
    T1T2=[T1T2,mean(t1t2(i:i+149))];
end
plot(T1T2,'b-s','linewidth',2,'MarkerSize',6,'MarkerIndices',1:2:length(ST2T2));
hold on
title('Ankang Reservoir 2003 & 2000');
xlabel('Number of Function Evaluations');
ylabel('Average Positive transfer probability');
legend('The surrogate of T1 positive transfer to T1',...
       'The surrogate of T1 positive transfer to T2',...
       'The surrogate of T2 positive transfer to T1',...
       'The surrogate of T2 positive transfer to T2',...
       'T1 positive transfer to T2');
%  set(gca,'xticklabel',{'0','4500','9000','13500','18000','22500','27000',...
%      '31500','36000','40500','45000','49500','54000','58500','63000',...
%      '67500','72000','76500','81000','85500','90000'});
 set(gca,'xticklabel',{'0','9000','18000','27000','36000','45000','54000','63000','72000','81000','90000'});


🌈3 Matlab代码实现

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]Shangqi Yang, Yutao Qi, Rui Yang, Xiaoliang Ma, Haibin Zhang (2022) Surrogate assist Multitasking optimization Algorithm

相关文章
|
1天前
|
传感器 算法
基于GA遗传算法的多机无源定位系统GDOP优化matlab仿真
本项目基于遗传算法(GA)优化多机无源定位系统的GDOP,使用MATLAB2022A进行仿真。通过遗传算法的选择、交叉和变异操作,迭代优化传感器配置,最小化GDOP值,提高定位精度。仿真输出包括GDOP优化结果、遗传算法收敛曲线及三维空间坐标点分布图。核心程序实现了染色体编码、适应度评估、遗传操作等关键步骤,最终展示优化后的传感器布局及其性能。
|
2天前
|
机器学习/深度学习 算法 安全
基于深度学习的路面裂缝检测算法matlab仿真
本项目基于YOLOv2算法实现高效的路面裂缝检测,使用Matlab 2022a开发。完整程序运行效果无水印,核心代码配有详细中文注释及操作视频。通过深度学习技术,将目标检测转化为回归问题,直接预测裂缝位置和类别,大幅提升检测效率与准确性。适用于实时检测任务,确保道路安全维护。 简介涵盖了算法理论、数据集准备、网络训练及检测过程,采用Darknet-19卷积神经网络结构,结合随机梯度下降算法进行训练。
|
3天前
|
算法 数据可视化 数据安全/隐私保护
一级倒立摆平衡控制系统MATLAB仿真,可显示倒立摆平衡动画,对比极点配置,线性二次型,PID,PI及PD五种算法
本课题基于MATLAB对一级倒立摆控制系统进行升级仿真,增加了PI、PD控制器,并对比了极点配置、线性二次型、PID、PI及PD五种算法的控制效果。通过GUI界面显示倒立摆动画和控制输出曲线,展示了不同控制器在偏转角和小车位移变化上的性能差异。理论部分介绍了倒立摆系统的力学模型,包括小车和杆的动力学方程。核心程序实现了不同控制算法的选择与仿真结果的可视化。
31 15
|
3天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
4天前
|
算法 数据安全/隐私保护 计算机视觉
基于FPGA的图像双线性插值算法verilog实现,包括tb测试文件和MATLAB辅助验证
本项目展示了256×256图像通过双线性插值放大至512×512的效果,无水印展示。使用Matlab 2022a和Vivado 2019.2开发,提供完整代码及详细中文注释、操作视频。核心程序实现图像缩放,并在Matlab中验证效果。双线性插值算法通过FPGA高效实现图像缩放,确保质量。
|
5天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
5天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
1月前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
148 68
|
1月前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。

热门文章

最新文章