基于鲸鱼优化算法的5G信道估计(Matlab代码实现)

本文涉及的产品
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介: 基于鲸鱼优化算法的5G信道估计(Matlab代码实现)

💥1 概述

      2006年, Donoho等人[4提出压缩感知(Com-pressive Sensing , CS)概念框架,并用数学模型为理论提供支撑。压缩感知理论突破了奈奎斯特采样定理对信号维度的限制,避免稀疏信号在奈奎斯特采样时会产生的大量冗余信息,并缓解硬件设备和算法负担。


鲸鱼优化算法(Whale Optimization Algorithm,简称WOA)是一种启发式算法,受到鲸鱼在寻找猎物时的行为启发而提出的。它主要用于解决优化问题,包括信道估计问题。


5G信道估计是为了获取无线信道的状态信息,以便进行资源分配、功率控制等操作。在使用鲸鱼优化算法进行5G信道估计时,按照以下步骤进行:


1. 定义问题:明确信道估计的目标和约束条件。例如,可以将问题定义为最小化信道误差的均方根(Root Mean Square Error,RMSE)。

2. 初始化种群:随机生成一些鲸鱼个体作为初始种群。

3. 迭代更新:通过模拟鲸鱼的搜索行为进行迭代更新。具体来说,可以按照以下步骤进行:

  - 计算适应度:根据当前鲸鱼个体的位置,计算其对应的适应度值,即信道误差。

  - 更新最优个体:记录当前种群中适应度最好的个体作为当前的最优解。

  - 更新位置:根据当前个体的适应度值和最优个体的位置,更新每个鲸鱼个体的位置。

  - 更新搜索半径:根据当前迭代次数和最大迭代次数的比值,更新每个鲸鱼个体的搜索半径。

  - 达到停止条件:判断是否达到停止条件,如果是,则停止迭代;否则,返回到第一步进行下一轮迭代。

4. 输出结果:根据迭代结束后的最优个体,得到信道估计结果。


需要注意的是,鲸鱼优化算法的效果与具体的问题、算法参数设置以及迭代次数等因素有关,因此在实际应用中,可以根据具体情况进行调整和优化。此外,还可以结合其它算法和技术,如机器学习方法和统计方法,来进一步提高5G信道估计的性能。


📚2 运行结果

部分代码:

% Channel estimation using LS, WOA and MMSE 
% Number of OFDM Symbol = 1e1
% Channel model: TDLC-300
clc, clear; close all;
methods = {'LS ', 'WOA', 'MMSE'}            % Channel estimation methods
snrRange            = 0:5:30;               % Signal to noise ratio in dB
numSymbol           = 1e1;                  % Number of symbols
numFft              = 4096;                 % Size of DFT 
numCp               = numFft/4;             % Number of CP
subCarrierSpacing   = 30e3;                 % Subcarrier Spacing
numBitPerSym        = 4;                    % Number of bits per (modulated) symbol
numSymPerPilot      = 12;                   % Number of (modulated) symbol per pilots
numBitBerSecond     = 1e3;                  % Number of bits per second
signalEnergy        = 100;                  % Energy of signal
% Propagation Channel Model Configuration
% Create a TDL channel model object and specify its propagation characteristics.
numTapEst   = 400;                          % Number of est. channel taps
numTap      = 320;                          % Number of true channel taps
% TDLC300-100
tapDelay    = [0    65 70   190  195  200  245  325  520  1045  1510  2595];    % in ns
tapPower    = [-6.9 0  -7.7 -2.5 -2.4 -9.9 -8.0 -6.6 -7.1 -13.0 -14.2 -16.0];   % in dB 
% WOA Alg
maxIter     = 8;                            % maximum number of generations
numAgent    = 8;                            % Number of search agents
ub          = [50   100 400];               % [ub1,ub2,...,ubn] where ubn is the upper bound of variable n
lb          = [0    20  0];                 % [lb1,lb2,...,lbn] where lbn is the lower bound of variable n
dim         = 3;                            % Number of variables
positions   = rand(numAgent, dim).*(ub-lb) + lb;
visualization = 0;
saveOrNot = 0;                              % = 1 for save
sampRate    = numFft*subCarrierSpacing;     % Sample rate
numPilot    = ceil(numFft/numSymPerPilot);  % Number of pilots per OFDM symbol
pilotLoc    = zeros(numPilot, 1);           % Pilot's Location
pathLoss    = zeros(numTap, 1);         
tapSample   = round(tapDelay*1e-9*sampRate);  
pathLoss(tapSample+1) = 10.^(tapPower/10);  % Path loss of channel
M           = 2^numBitPerSym;               % M - QAM
A           = sqrt(3/2/(M-1)*signalEnergy); % QAM normalization factor
Nofdm       = numFft + numCp;               % Number of OFDM
numData     = numFft - numPilot;            % Number of data
MSEs_snr    = zeros(length(snrRange),length(methods));
ber_snr     = zeros(length(snrRange),length(methods));
fileIdx     = getFileId(saveOrNot);
tic 
for snrIdx = 1:length(snrRange)
    SNR = snrRange(snrIdx);
    er = zeros(1,length(methods));
    MSE = zeros(1,length(methods));
    for nsym=1:numSymbol
        msgint = randi([0 M-1],numFft-numPilot,1);      % Symbol generation
        data = qammod(msgint, M);
        % Add pilot
        p = randi([0, M-1], numPilot, 1);               % Pilot sequence generation
        pilot = qammod(p, M);
        ip = 0;
        X = zeros(numFft, 1);
        for k=1:numFft
            if rem(k,numSymPerPilot)== 1
                ip = ip+1;
                X(k)=pilot(floor(k/numSymPerPilot)+1);  % For pilot
                pilotLoc(ip) = k;                       % For pilot location
            else
                X(k) = data(k-ip);                      % For data
            end
        end
        % OFDM
        x = ifft(X,numFft);                             % IFFT
        xt = [x(numFft-numCp+1:numFft); x];             % add CP
        % PA
        tx = A*xt;
        signalPowerdB = 10*log10(cov(tx));
        % Channal gain
        h = (randn(numTap, 1)+1j*randn(numTap, 1))...
            .*sqrt(pathLoss/2);                        % Channel gain
        H = fft(h,numFft);                             % True channel frequency respond
        H_power_dB = 10*log10(abs(H.*conj(H)));        % True channel power in dB
        y_channel = conv(tx,h);                        % Channel path (convolution)
        % Add noise
        rx = awgn(y_channel, SNR, 'measured');
        % rx = y_channel + 1/(sqrt(2.0)*10^(SNR/20))*complex(randn(size(y_channel)),randn(size(y_channel)));
        % sto = sto_est(rx, numFft, numCp);
        % Receiver
        y = rx(numCp+1:Nofdm);                         % Remove CP
        Y = fft(y);                                    % FFT
        % Channel estimation
        for methodIdx = 1:length(methods)
            method = methods{methodIdx};
            if     method(1) == 'L'
                % LS estimation with linear interpolation
                H_est = LS_CE(Y,pilot,pilotLoc,numFft, 'linear');
            elseif method(1) == 'W'
                % WOA estimation
                [H_est, positions] = WOA_CE(Y,pilot,pilotLoc,numFft, numSymPerPilot, numBitPerSym, ...
                        positions,  numAgent, maxIter, lb, ub, dim);
            elseif method(1) == 'M'
                % MMSE estimation
                H_est = MMSE_CE(Y,pilot,pilotLoc,numFft,numSymPerPilot,h,SNR);
            end
            if method(end) == 'T'
                h_est = ifft(H_est);                   % Esti channel gain
                h_est = h_est(1:numTapEst);            % N-tap channel gain
                H_est = fft(h_est,numFft);             % DFT-based channel estimation
            end
            H_est_power_dB = ...
                10*log10(abs(H_est.*conj(H_est)));     % Esti channel power in dB
            Y_eq = Y./H_est;
            Data_extracted = zeros(numFft- numPilot, 1);
            ip = 0;
            for k=1:numFft
                if mod(k,numSymPerPilot)==1
                    ip=ip+1;
                else
                    Data_extracted(k-ip)=Y_eq(k);
                end
            end
            msg_detected = qamdemod(Data_extracted, M);
            bitDetected = de2bi(msg_detected, numBitPerSym);
            bitTrans    = de2bi(msgint, numBitPerSym);
            er(methodIdx) = er(methodIdx) + sum(sum(bitDetected~=bitTrans));
            MSE(methodIdx) = MSE(methodIdx) + (H-H_est/A)'*(H-H_est/A);
            %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
            if visualization
                figure(snrIdx)
                subplot(1, length(methods), methodIdx)
                hold on
                scatter(real(Data_extracted), imag(Data_extracted), 'b.')
                title(methods{methodIdx})
                pause(0)
            end
        end
    end
    MSEs = MSE/(numFft*numSymbol);
    MSEs_snr(snrIdx, :) = MSEs;
    ber_snr(snrIdx, :) = er/(numSymbol*numData*numBitPerSym);
    for methodIdx = 1:length(methods)
        str = sprintf('SNR = %2.0f dB: BER of %s \t= %6.5f\n', SNR, methods{methodIdx}, ber_snr(snrIdx, methodIdx));
        fprintf(str)
        if saveOrNot
            if methodIdx == 1
            fprintf(fileIdx, '\n-----------------------------------------\n');
            end
            fprintf(fileIdx, str);
        end
    end
end
if saveOrNot  
    fclose(fileIdx);
end
figure
subplot(121)
semilogy(snrRange, ber_snr)
legend(methods{:})
xlabel('SNR')
ylabel('BER')
grid on
subplot(122)
semilogy(snrRange, MSEs_snr)
legend(methods{:})
xlabel('SNR')
ylabel('MSE')
grid on
toc
% Local Functions
function [H_interpolated] = interpolate(H,pilot_loc,Nfft,method)
% Input: H = Channel estimate using pilot sequence
% pilot_loc = Location of pilot sequence
% Nfft = FFT size
% method = 鈥檒inear鈥�/鈥檚pline鈥�
% Output: H_interpolated = interpolated channel
if pilot_loc(1)>1
    slope = (H(2)-H_est(1))/(pilot_loc(2)-pilot_loc(1));
    H = [H(1)-slope*(pilot_loc(1)-1); H]; pilot_loc = [1; pilot_loc];
end
if pilot_loc(end) <Nfft
    slope = (H(end)-H(end-1))/(pilot_loc(end)-pilot_loc(end-1));
    H = [H; H(end)+slope*(Nfft-pilot_loc(end))];
    pilot_loc = [pilot_loc; Nfft];
end
if lower(method(1))=='l'
    H_interpolated = interp1(pilot_loc,H,[1:Nfft]', 'linear');
else
    H_interpolated = interp1(pilot_loc,H,[1:Nfft]', 'spline');
end
end
function H_LS = LS_CE(Y,Xp,pilot_loc,Nfft,int_opt)
% LS channel estimation function
% Inputs:
% Y = Frequency-domain received signal
% Xp = Pilot signal
% pilot_loc = Pilot location
% N = FFT size
% Nps = Pilot spacing
% int_opt = 鈥檒inear鈥� or 鈥檚pline鈥�
% output:
% H_LS = LS Channel estimate
LS_est = Y(pilot_loc)./Xp; % LS channel estimation
if lower(int_opt(1))=='l'
    method='linear';
else
    method='spline';
end
% Linear/Spline interpolation
H_LS = interpolate(LS_est,pilot_loc,Nfft,method);
end
function H_MMSE = MMSE_CE(Y,Xp,pilot_loc,Nfft,Nps,h,SNR)
% MMSE channel estimation function
% Inputs:
% Y = Frequency-domain received signal
% Xp = Pilot signal
% pilot_loc = Pilot location
% Nfft = FFT size
% Nps = Pilot spacing
% h = Channel impulse response
% SNR = Signal-to-Noise Ratio[dB]
% output:
% H_MMSE = MMSE channel estimate
% Calculate RMS delay spread
Ph = h.*conj(h);
Ptotal = h'*h;
t_sym = 1*(0:length(h)-1)';
t_mean = sum(t_sym.*Ph/Ptotal);
t_cov = sum(t_sym.^2.*Ph/Ptotal);
t_rms = sqrt(t_cov-t_mean^2);
f_max = 100;
H_MMSE = MMSE_ideal(Y,Xp,pilot_loc,Nfft,Nps,SNR, t_rms, f_max);
end
function [H_WOA, Positions] = WOA_CE(Y,Xp,pilot_loc,Nfft,Nps, Nbs, ...
                 Positions, NumAgent, Max_iter, lb, ub, dim)    
% fobj              = @CostFunction
% dim               = number of your variables
% Max_iteration     = maximum number of generations
% SearchAgents_no   = number of search agents
% lb                = [lb1,lb2,...,lbn] where lbn is the lower bound of variable n
% ub                = [ub1,ub2,...,ubn] where ubn is the upper bound of variable n
fobj = @ (x) MMSE_loss(Y, Xp, pilot_loc, Nfft, Nps, Nbs, x(1), x(2), x(3));
x = WhaleOptAlg(NumAgent,Max_iter,lb,ub,dim,fobj);
SNR   = x(1);
t_rms = x(2);
f_max = x(3);
H_WOA = MMSE_ideal(Y,Xp,pilot_loc,Nfft,Nps,SNR, t_rms, f_max);
end
function fileId = getFileId(enable)
if enable == 0
    fileId = 0;
    return 
end
ctime       = clock;
cmonth     = ctime(2); smonth  = num2str(cmonth);
cday       = ctime(3); sday    = num2str(cday);
chour      = ctime(4); shour   = num2str(chour);
cminute    = ctime(5); sminute = num2str(cminute);
fileName = ['CE', smonth, sday, shour, sminute, '.txt'];
fileId = fopen(fileName, 'w');
end


🎉3 参考文献

👨‍💻4 Matlab代码实现

相关实践学习
基于MSE实现微服务的全链路灰度
通过本场景的实验操作,您将了解并实现在线业务的微服务全链路灰度能力。
相关文章
|
10天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
15天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
基于ACO蚁群优化的VRPSD问题求解MATLAB仿真,输出ACO优化的收敛曲线、规划路径结果及每条路径的满载率。在MATLAB2022a版本中运行,展示了优化过程和最终路径规划结果。核心程序通过迭代搜索最优路径,更新信息素矩阵,确保找到满足客户需求且总行程成本最小的车辆调度方案。
|
21天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
24天前
|
机器学习/深度学习 算法 调度
基于ACO蚁群优化的VRPSD问题求解matlab仿真,输出规划路径结果和满载率
该程序基于ACO蚁群优化算法解决VRPSD问题,使用MATLAB2022a实现,输出优化收敛曲线及路径规划结果。ACO通过模拟蚂蚁寻找食物的行为,利用信息素和启发式信息指导搜索,有效求解带时间窗约束的车辆路径问题,最小化总行程成本。
|
22天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
24天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
9天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
11天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
10天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
10天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
26 3