基于转换器 (MMC) 技术和电压源转换器 (VSC) 的高压直流 (HVDC) 模型(Matlab&Simulink实现)

简介: 基于转换器 (MMC) 技术和电压源转换器 (VSC) 的高压直流 (HVDC) 模型(Matlab&Simulink实现)

1 概述

1000 MW HVDC-MMC 互连的 SPS 模型。本文基于模块化多电平转换器 (MMC) 技术的电压源转换器 (VSC) 的高压直流 (HVDC) 互连的 SimPowerSystems (SPS) 模型。 SPS 仿真通过使用聚合 MMC 模型进行了优化。


直流输电线路正成为国家间电力交换和可再生能源(水力发电厂、海上风力发电厂和太阳能发电厂)向电网输送电力的首选方式。其中一些系统目前正在运行,例如Dolwin1项目(海上风电HVDC链路),或计划用于未来的项目,如Northern Pass(加拿大-美国1090-MW直流链路)。


本文案例将说明目前使用的一种典型VSC拓扑:模块化多电平转换器(MMC)技术。在该示例中,MMC转换器使用聚合模型来实现,以模拟每臂 36 个电源模块。通过该聚合模型,可以很好地描述控制系统动力学、变流器谐波和循环电流现象。然而,只有一个虚拟电容器来代表手臂的 36 个电容器,该模型假设所有电源模块的电容器电压是均衡的。聚合模型的运行速度比详细模型要快得多,模型将详细为每个单独的电源模块使用两个开关设备和一个电容器。这种聚合模型也非常适合实时仿真。


模拟本文SPS模型10秒钟,可以观察启动(电容器充电)、电压调节和功率调节期间的互连操作。还提供了该聚合模型与SPS详细模型之间的比较。


 

2 主要模块说明

2.1 简化电网

电网使用 400 kV、50 Hz 等效电压和两个断路器为转换器 1 供电.

2.2 转换器 1

转换器 1 使用 6 个半桥 MMC 模块实现,每个模块代表 36 个电源模块。此自定义 SPS 模块使用开关功能模型,其中仅使用一个等效模块来表示所有电源模块。控制信号是一个二元向量 [Nin, Nbl],其中 Nin 表示插入模块的数量,Nbl 表示处于阻塞状态的模块数量。输出 Vc(电容器电压)只有一个元素,并给出电容器模块的平均值。


2.3 直流电路

在直流电路子系统中,将会发现电缆的简化模型,以及使用直流电源和理想开关建模的第二个转换器。您还将找到一个开关,用于在电缆上应用故障。


2.4 控制器

控制器子系统包含操作互连所需的各种控制系统。它包括以下子系统:有功和无功功率调节器-直流电压调节器-带前馈的dq电流调节器-PLL和测量子系统-用于控制转换器1(Converter1 )半桥MMC的PWM发电机。在文件夹中还可以找到对转换器1的各种操作模式进行编程的排序器区域。


2.5 示波器和测量

该子系统包含用于在仿真期间观察多个信号的所有示波器。功率和基波电压计算也在子系统中进行。


3 讲解

3.1 参数设置

模拟SPS 模型 10 秒,可以观察启动(电容器充电)、电压调节和功率调节期间的互连操作。运行模型所需的所有参数都可以在:HVDC_MMC_param.m这一子函数中看到。当示例打开时,该文件会在 MATLAB 工作区中自动执行。运行模型并观察到:

%HVDC_MMC_param.m:
% 此模块为SPS模型参数文件: HVDC_MMC.slx
load sound                     % 操作面板使用的sound.mat
Fnom= 50;                      % 系统频率 (Hz)
Pnom= 1000e6;                  %转换器三相额定功率(MVA)
Vnom_prim= 400e3;              % 标称初级电压 (V)
Vnom_sec= 333e3;               % 标称二次电压 (V)
Nb_PM=36;                      % 每臂电源模块数
Vnom_dc= 640e3;                % 直流标称电压 (V)
C_PM= 1.758e-3; % 电源模块电容器 (F)
%% 能量输入 kJ/MVA
W_kJ_MVA= 0.5 * C_PM * (Vnom_dc/Nb_PM)^2 * Nb_PM * 6 / (Pnom/1e6)/1e3;
Vc0_PM=0;                     % 电容初始电压 (V)
%% 序列器时序:
Tbrk1_On=0.1;                 % 断路器1合闸时间(换流器充电量)
Tbrk2_On=1.0;                 % 断路器 2 的闭合时间(s)(跨启动电阻)
%===========================================================%
Tdeblock=1.5;                 %转换器解除阻塞时间 (s)
Ton_VDCreg=1.5;               % VDC 稳压器开启时间 (s) - VDC 稳压
Tramping_Vdc_ref=2;           % 开始时间 Vdc_ref 上升到标称值 (s)
Slope_Vdc_ref=Vnom_dc/5;      % 爬坡 (V/s)
%==========================================================%
Ton_PQreg=4;                  % Preg & Qreg 稳压器开启时间 (s) - PQ 调节
Tramping_Pref=Ton_PQreg+0.2;  % 预爬坡开始时间(s)
Slope_Pref=0.5;               % 爬坡(V/s)
Tramping_Qref=Ton_PQreg+3.5;  % 预爬坡开始时间(s)
Slope_Qref=0.5;               % 爬坡(V/s)
%==========================================================%
Ton_Converter2=4;             % 转换器 2 等效开启时间 (s)
%%
Tfault= 9999;             %直流故障时序( s )
Rfault=1;                 %直流故障电阻(欧姆)
%% PWM 输出脉冲选择器
pp=0;
for p=1:2:72
    pp=pp+1;
    SelectPulses1(p)=pp;
    SelectPulses1(p+1)=pp+36;
end
%====================================================%
Ts_Power= 20e-6;    % SPS仿真时间步长( s )
Ts_Control=40e-6;   % 控制系统时间步长(s)
Ts=Ts_Control;
%% 变压器阻抗
Lxfo= 0.12;         % 总漏感 (pu)
Rxfo= 0.003;        % 总绕组电阻( pu )
Zbase= Vnom_sec^2/Pnom;
Larm_pu=0.15;
Rarm_pu=Larm_pu/100;
Zbase= Vnom_sec^2/Pnom;
Larm=Larm_pu*(Zbase/(2*pi*Fnom));
Rarm=Rarm_pu*Zbase;
w=2*pi*Fnom;
wc2=(2*w)^2;
Cfilter=1/(Larm*wc2);      % 2次谐波滤波器的电容值( F )
Rfilter=1/(Cfilter*w)*30;  % 2次谐波滤波器的阻值(欧姆)
Topen_Filter=1e6;          % 二谐波滤波器的分断器开启时间( s )
%% 控制参数
%======(1)调制器参数======
Fc=Fnom*3.37;        %载波频率( Hz )
%======(2)dq 和 Vdc 测量滤波器截止频率:==
Fn_filter=1000;
Zeta_filter=1;
%======(3)有功功率调节器=======
Kp_Preg= 0.5/3;                % 比例增益
Ki_Preg= 1.0;                  % 积分增益
Limits_Preg = [ 1.2, 0.8 ] ;   %输出上限/下限 (pu)
%======(4)无功功率调节器======
Kp_Qreg= 0.5/3;                % 比例增益
Ki_Qreg= 1.0;                  % 积分增益
Limits_Qreg = [ 0.25, -0.25 ]; % 输出上限/下限 (pu)
%=====(5)直流稳压器==========
Kp_VDCreg=4;                   %比例增益
Ki_VDCreg=100;                 %积分增益
Limits_VDCreg= [ 2.0  -2.0];   % 输出上限/下限 (pu)
%======(6)电流调节器========
Kp_Ireg= 0.6;                  % 比例增益
Ki_Ireg= 6;                    % 积分增益
Limits_Ireg= [ 2.0  -2.0];     % 输出上限/下限 (pu)
%=====(7)前馈系数==========
Lff=Larm_pu/2;
Rff= Rarm_pu/2;
%% 电力系统参数
Psc= Pnom*20;     % 短路功率 (MVA)
X_R= 7;           % X/R ratio
P_Ld1= Psc/30;   % 负载(主母线)(MW)
R_startup= 400;   % 启动阻力(欧姆)
%=====电缆数据======
R_cable = 0.5;      %欧姆
L_cable= 15e-3;   % (H)
% 接地( RC)
Rg= 100;              % 欧姆
Cg= 50e-9;            % (F)


在 0.1 秒时,断路器 1 闭合,转换器 1 通过电阻器通电以降低充电电流。电容器正在充电,并且在 1 秒时,启动电阻器通过闭合断路器 2 短路。


在 1.5 秒时,转换器 1 被解除阻塞并且电压调节器被启用。


在 2 秒时,电压调节器设定点斜升至互连的标称直流工作电压:640 kV (+/-320 kV)。


在 4 秒时,PQ 稳压器启用,转换器 2 开关闭合。


在 4.2 秒时,有功功率调节器设定点斜升至 1pu (1000 MW)。


在 7.5 秒时,无功功率调节器设定点斜升至 0.25pu (250 Mvar)。


如果在工作区中将参数“Tfault”的值设置为 7(实际默认值 =9999)并重新开始仿真,则在 7s 时将在电缆中间施加直流故障。半桥 MMC 将被阻塞,互连将在两个周期后关闭(Brk1 将打开)。


3.2 SPS 比较

要将此模型的结果与包含 432 (2*36*6) 个 IGBT 的详细 SPS 模型进行比较,只需双击比较结果子系统。要将此模型与其他 SPS MMC 模型的仿真速度进行比较,只需双击 Compare Speed 子系统。

close all
%
% Ts_Power=20us & Ts_Control=40us
%
ExecTime(1)=1351;   % SwD (s)
ExecTime(2)=64;    % SwF (s)
ExecTime(3)=49;     % Agg (s)
ExecTime(4)=28;     % Avg (s)
%
h1=figure;
set(h1,'Name','Speed Comparison');
ScreenS=get(0,'Screensize');
set(h1,'Position',[ScreenS(3)*0.2 ScreenS(4)*0.16 ScreenS(3)*0.58 ScreenS(4)*0.67])
bar(1,1./(ExecTime(1)/max(ExecTime)),'k')
hold on
bar(2,1./(ExecTime(2)/max(ExecTime)),'b')
bar(3,1./(ExecTime(3)/max(ExecTime)),'r')
bar(4,1./(ExecTime(4)/max(ExecTime)),'g')
ylabel('越高越好','Fontsize',18,'Color','r')
title('性能比较:4种MMC模型','Fontsize',16,'Color','r')
legend('开关器件(以 432 IGBT 为模型)','开关功能(使用 432 个门信号操作)','聚合(本文)', '平均(不需要 PWM 发生器,Uref 控制)','Location','NorthWest')
grid
axis([0 5 0 65])
xlabel('SimPowerSystems MMC 模型')
text(0.1,51,'SPS sample time (Ts Power) = 20us')
text(0.1,49,'控制系统采样时间 (Ts Control) = 40us')


3.3 结果比较

%.......
h1=figure;
set(h1,'Name','DC');
ScreenS=get(0,'Screensize');
set(h1,'Position',[ScreenS(3)*0.01 ScreenS(4)*0.52 ScreenS(3)*0.32 ScreenS(4)*0.37])
subplot(2,1,1)
plot(results.time3,results.signals(1).values*1e-3,'b', ...
results.time3,results.signals(11).values*1e-3,'r')
ylabel('(kV)')
grid
title('Vdc Conv1')
axis([0 10 0 700])
legend('SwD','Agg')
subplot(2,1,2)
plot(results.time3,results.signals(2).values,'b', ...
results.time3,results.signals(12).values,'r')
ylabel('(A)')
xlabel('(s)')
grid
title('Idc Conv1')
legend('SwD','Agg')
axis([0 10 -2000 1000])
%
h1=figure;
set(h1,'Name','PQ');
ScreenS=get(0,'Screensize');
set(h1,'Position',[ScreenS(3)*0.34 ScreenS(4)*0.52 ScreenS(3)*0.32 ScreenS(4)*0.37])
subplot(2,1,1)
plot(results.time2,results.signals(3).values,'b', ...
results.time2,results.signals(13).values,'r')
ylabel('(MW)')
grid
title('有功功率')
axis([0 10 -500 1500])
legend('SwD','Agg','Location','southeast')
subplot(2,1,2)
plot(results.time2,results.signals(4).values,'b', ...
results.time2,results.signals(14).values,'r')
ylabel('(Mvar)')
xlabel('(s)')
grid
title('无功功率')
axis([0 10 -300 300])
legend('SwD','Agg','Location','southeast')
%
% 
h1=figure;
set(h1,'Name','Iprim');
ScreenS=get(0,'Screensize');
set(h1,'Position',[ScreenS(3)*0.67 ScreenS(4)*0.52 ScreenS(3)*0.32 ScreenS(4)*0.37])
plot(results.time1(1:25000),results.signals(5).values(1:25000),'b')
hold on
plot(results.time1(1:25000),results.signals(15).values(1:25000),'r')
ylabel('(A)')
xlabel('(s)')
grid
title('一次电流, A相')
axis([0.35 0.45 -250 250])
text(0.38,225,'(during capacitors energization)')
legend('SwD','Agg','Location','southeast')
%
h1=figure;
set(h1,'Name','Vcap');
ScreenS=get(0,'Screensize');
set(h1,'Position',[ScreenS(3)*0.01 ScreenS(4)*0.06 ScreenS(3)*0.32 ScreenS(4)*0.37])
subplot(2,2,1)
plot(results.time1(225000:250000),results.signals(6).values)
ylabel('(V)')
axis([9.9 9.98 16000 20000])
grid
title('Vcap 4 模块; SwD')
subplot(2,2,2)
plot(results.time1(225000:250000),results.signals(16).values,'r')
axis([9.9 9.98 16000 20000])
ylabel('(V)')
grid
title('Vcap 平均值: Agg')
subplot(2,2,[3:4])
plot(results.time1(225000:250000),results.signals(7).values,'b', ...
results.time1(225000:250000),results.signals(17).values,'r')
ylabel('(V)')
axis([9.9 9.98 16000 20000])
xlabel('(s)')
grid
title('电容器平均电压,上臂 phA')
legend('SwD','Agg','Location','northeast')
%
h1=figure;
set(h1,'Name','Iarm');
ScreenS=get(0,'Screensize');
set(h1,'Position',[ScreenS(3)*0.34 ScreenS(4)*0.06 ScreenS(3)*0.32 ScreenS(4)*0.37])
plot(results.time1(225000:250000),results.signals(8).values,'b', ...
results.time1(225000:250000),results.signals(18).values,'r')
ylabel('(A)')
xlabel('(s)')
grid
title('臂, 上臂, A相')
axis([9.9 10.0 -2000 2000])
legend('SwD','Agg','Location','southeast')
%
h1=figure;
set(h1,'Name','Iprim');
ScreenS=get(0,'Screensize');
set(h1,'Position',[ScreenS(3)*0.67 ScreenS(4)*0.06 ScreenS(3)*0.32 ScreenS(4)*0.37])
plot(results.time1(225000:250000),results.signals(5).values(225000:250000),'b', ...
results.time1(225000:250000),results.signals(15).values(225000:250000),'r')
ylabel('(A)')
xlabel('(s)')
grid
title('A相一次电流')
axis([9.9 10.0 -2500 2500])
text(9.935,2300,'(in steady-state)')
legend('SwD','Agg','Location','southeast')
%  


需要准备:

Simulink

SimPowerSystems

Simscape


3.4 参考文献

[1]VSC-HVDC Transmission with Cascaded Two-Level Converters

Bjorn Jacobson, Patrik Karlsson, Gunnar Asplund, Lennart Harnefors, Tomas Jonsson

ABB,Sweden

CIGRE 2010 B4-110


[2]Setup and Performance of the Real-Time Simulator used for Hardware-in-Loop-Tests of a

VSC-Based HVDC scheme for Offshore Applications.

O. Venjakob, S. Kubera, R. Hibberts-Caswell, P.A. Forsyth, T.L. Maguire

Siemens, Germany & RTDS Technologies, Canada

Paper submitted to the International Conference on Power Systems Transients (IPST2013) in

Vancouver, Canada July 18-20, 2013.


4 Matlab代码实现

相关文章
|
7天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
13天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
1月前
|
算法
基于HASM模型的高精度建模matlab仿真
本课题使用HASM进行高精度建模,介绍HASM模型及其简化实现方法。HASM模型基于层次化与自适应统计思想,通过多层结构捕捉不同尺度特征,自适应调整参数,适用于大规模、高维度数据的分析与预测。MATLAB2022A版本运行测试,展示运行结果。
|
2月前
|
机器学习/深度学习 算法 数据处理
基于最小二乘法的太阳黑子活动模型参数辨识和预测matlab仿真
本项目基于最小二乘法,利用Matlab对太阳黑子活动进行模型参数辨识和预测。通过分析过去288年的观测数据,研究其11年周期规律,实现对太阳黑子活动周期性的准确建模与未来趋势预测。适用于MATLAB2022a版本。
|
2月前
|
算法
基于Kronig-Penney能带模型的MATLAB求解与仿真
基于Kronig-Penney能带模型的MATLAB求解与仿真,利用MATLAB的多种数学工具简化了模型分析计算过程。该模型通过一维周期势垒描述晶体中电子运动特性,揭示了能带结构的基本特征,对于半导体物理研究具有重要价值。示例代码展示了如何使用MATLAB进行模型求解和图形绘制。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
225 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
141 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
111 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
7月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)

热门文章

最新文章