【RL-GAN-Net】强化学习控制GAN网络,用于实时点云形状的补全。

简介: 【RL-GAN-Net】强化学习控制GAN网络,用于实时点云形状的补全。
  • 论文题目RL-GAN-Net: A Reinforcement Learning Agent Controlled GAN Network for Real-Time Point Cloud Shape Completion

所解决的问题

  用强化学习控制GAN网络,以使得GAN更快,更鲁棒。将其用于点云数据生成。全网第一次用RL控制GAN。通过数据驱动的方法填补三维数据中的数据缺失。

所采用的方法?

  预训练阶段,训练一个自编码器,用于生成隐空间的表示,之后用这个去训练GAN网络。强化学习智能体用于选择合适的z zz向量,去合成隐空间的表示。与之前的反向传播发现z zz向量不同,本文采用RL的方法进行选择。

  主要由三个模块组成:1. 自编码器;2. l ll-GAN;3. 强化学习智能体(RL)。

自编码器

  自编码器用的损失函数如下:

image.png

  其中P1P2代表点云的输入和输出。

l ll-GAN

  结合GFV来训练GAN

  • Chamfer loss:

image.png

  • Discriminator loss 判别器损失函数:

image.png

20200418180322888.png

强化学习

  强化学习用于快速选择GAN生成器的输入z zz

  奖励函数定义为:

image.png

20200418182850574.png


取得的效果?

参考资料

  相似文献

  • Panos Achlioptas, Olga Diamanti, Ioannis Mitliagkas, and Leonidas J. Guibas. Representation learning and adversarial generation of 3d point clouds. CoRR, abs/1707.02392, 2017. (有提到用隐空间数据训练GAN会更稳定)。

  相关GitHub链接

目录
打赏
0
0
0
0
25
分享
相关文章
基于DeepSeek的生成对抗网络(GAN)在图像生成中的应用
生成对抗网络(GAN)通过生成器和判别器的对抗训练,生成高质量的合成数据,在图像生成等领域展现巨大潜力。DeepSeek作为高效深度学习框架,提供便捷API支持GAN快速实现和优化。本文详细介绍基于DeepSeek的GAN技术,涵盖基本原理、实现步骤及代码示例,展示其在图像生成中的应用,并探讨优化与改进方法,如WGAN、CGAN等,解决模式崩溃、训练不稳定等问题。最后,总结GAN在艺术创作、数据增强、图像修复等场景的应用前景。
210 16
DeepSeek生成对抗网络(GAN)的训练与应用
生成对抗网络(GANs)是深度学习的重要技术,能生成逼真的图像、音频和文本数据。通过生成器和判别器的对抗训练,GANs实现高质量数据生成。DeepSeek提供强大工具和API,简化GAN的训练与应用。本文介绍如何使用DeepSeek构建、训练GAN,并通过代码示例帮助掌握相关技巧,涵盖模型定义、训练过程及图像生成等环节。
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
611 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
使用Python实现深度学习模型:强化学习与深度Q网络(DQN)
使用Python实现深度学习模型:强化学习与深度Q网络(DQN)
678 2
精选2款C#/.NET开源且功能强大的网络通信框架
精选2款C#/.NET开源且功能强大的网络通信框架
178 0
一个整合性、功能丰富的.NET网络通信框架
一个整合性、功能丰富的.NET网络通信框架
.NET 网络唤醒
【9月更文挑战第5天】在网络管理中,.NET 可以实现 Wake-on-LAN,即通过发送特定数据包(魔术包)唤醒睡眠或关机状态的计算机。首先需引入命名空间(System.Net, System.Net.Sockets),然后编写 WakeUpComputer 方法,构造并发送含有目标计算机 MAC 地址的魔术包,最后调用此方法即可。使用前,请确认目标计算机及网络设备支持此功能。
93 12
深入探索强化学习与深度学习的融合:使用TensorFlow框架实现深度Q网络算法及高效调试技巧
【8月更文挑战第31天】强化学习是机器学习的重要分支,尤其在深度学习的推动下,能够解决更为复杂的问题。深度Q网络(DQN)结合了深度学习与强化学习的优势,通过神经网络逼近动作价值函数,在多种任务中表现出色。本文探讨了使用TensorFlow实现DQN算法的方法及其调试技巧。DQN通过神经网络学习不同状态下采取动作的预期回报Q(s,a),处理高维状态空间。
113 1
【Tensorflow+keras】Keras API两种训练GAN网络的方式
使用Keras API以两种不同方式训练条件生成对抗网络(CGAN)的示例代码:一种是使用train_on_batch方法,另一种是使用tf.GradientTape进行自定义训练循环。
82 5
探索JSF单元测试秘籍!如何让您的应用更稳固、更高效?揭秘成功背后的测试之道!
【8月更文挑战第31天】在 JavaServer Faces(JSF)应用开发中,确保代码质量和可维护性至关重要。本文详细介绍了如何通过单元测试实现这一目标。首先,阐述了单元测试的重要性及其对应用稳定性的影响;其次,提出了提高 JSF 应用可测试性的设计建议,如避免直接访问外部资源和使用依赖注入;最后,通过一个具体的 `UserBean` 示例,展示了如何利用 JUnit 和 Mockito 框架编写有效的单元测试。通过这些方法,不仅能够确保代码质量,还能提高开发效率和降低维护成本。
83 0