考虑多能负荷不确定性的区域综合能源系统鲁棒规划(Matlab&Python代码)

简介: 考虑多能负荷不确定性的区域综合能源系统鲁棒规划(Matlab&Python代码)

💥1 概述

文献来源:

多能互补集成优化的综合能源系统(integrated energy system , IES)是能源互联网的重要发展方向之一E1-9]。能源互联网是“推动分布式可再生能源的大规模利用与分享,促进电力、交通、天然气等多种复杂网络系统的相互融合”的综合能源网络( comprehensive energy network)[ 6-7]。类似地,“综合能源系统”概念为电-冷-热-气多能互补集成优化的区域能源系统,涉及热电联供机组、变电站、配电馈线﹑供热站、供冷/热管道、供气站等设备的规划和运行。“多能互补”意在改变原有各能源供用系统各自规划设计、独立运行的现状,对不同供用能系统进行统一的协调优化。能源互联网中 IES的建设,对于提升社会用能效率、促进可再生能源规模化利用等都具有重要意义[8-9]。


具体到IES规划方法研究方面﹐目前的研究成果集中于不同背景、不同组成的多类型能源系统的建模与规划。例如,基于EH的考虑电/热/气多能耦合的规划L17-20],考虑多方利益主体、差异化用能需求的规划流程[2,考虑冷热电存储的区域综合能源站优化设计[22,结合热网模型的多区域协同规划[23],考虑采暖期和供冷期园区级别规划[24]、评估指标与方法[25]、能量整体运输模型[26]、评估指标与方法[2]等。然而,上述研究成果大部分未考虑其中的不确定性因素,或仅通过多场景方法19-21]考虑不确定性。


从能源供给方式的角度考虑,一般而言,区域IES包含变电站、热电联供机组﹑燃气锅炉/电锅炉、集中式制冷站等供能手段,能源的供给方式和需求形式都是多样化的。在描述IES的多能特性方面,EH模型已经受到广泛的认可。一个典型的基于EH的区域IES如图1所示。


📚2 运行结果

 部分代码:

%% 模型变量声明
%0-1机组建设决策变量
X_CCHP=binvar(1,CCHP_types,'full');
X_GB=binvar(1,GB_types,'full');
X_AC=binvar(1,AC_types,'full');
X_EB=binvar(1,EB_types,'full');
X_SUB=binvar(1,SUB_types,'full');
%机组耗电耗气连续变量
P_CCHP_gas=sdpvar(Load_scene,CCHP_types,'full');    %CCHP单位时间内所用燃气热值,单位是MW(应该修改成kw比较合???)
V_CCHP_gas=sdpvar(Load_scene,CCHP_types,'full');    %CCHP单位时间内所用燃气量,单位是m3/h
P_SUB_electricity=sdpvar(Load_scene,SUB_types,'full');      %变电站出力,单位是MW
P_GB_gas=sdpvar(Load_scene,GB_types,'full');        %GB(燃气锅炉)单位时间内所用燃气热值,单位是MW
V_GB_gas=sdpvar(Load_scene,GB_types,'full');        %GB单位时间内所用燃气量,单位是m3/h
P_AC_electricity=sdpvar(Load_scene,AC_types,'full'); %中央空调输入电出力,单位MW
P_EB_electricity=sdpvar(Load_scene,EB_types,'full');%电锅炉输入电能,单位MW
%% 约束条件
Constraints=[];   
%%
Cons_PL=[];
P=sdpvar(SUB_types+CCHP_types+GB_types+AC_types+EB_types,Load_scene,'full');
for t=1:Load_scene  %P为输入矩阵
    Cons_PL=[ Cons_PL,P(:,t)==[P_SUB_electricity(t,:)';P_CCHP_gas(t,:)';P_GB_gas(t,:)';P_AC_electricity(t,:)';P_EB_electricity(t,:)']];%注意这里是等号==
end
L=sdpvar(3,Load_scene,'full');  %L为输出矩阵
for t=1:Load_scene  %8个典型日的电、气、热
    Cons_PL=[Cons_PL,L(:,t)==[Load_E(t)+sum(P_AC_electricity(t,:),2)+sum(P_EB_electricity(t,:),2);Load_C(t);Load_H(t)]];
end
Constraints=[Constraints,Cons_PL];
%==============负荷平衡,公式5================


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]沈欣炜,郭庆来,许银亮等.考虑多能负荷不确定性的区域综合能源系统鲁棒规划[J].电力系统自动化,2019,43(07):34-41.

🌈4 Matlab&Python代码、数据、文章

相关文章
|
9天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
9天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
91 14
|
9天前
|
机器学习/深度学习 算法
【概率Copula分类器】实现d维阿基米德Copula相关的函数、HACs相关的函数研究(Matlab代码实现)
【概率Copula分类器】实现d维阿基米德Copula相关的函数、HACs相关的函数研究(Matlab代码实现)
|
9天前
|
机器学习/深度学习 传感器 算法
【裂纹检测】检测和标记图片中的裂缝(Matlab代码实现)
【裂纹检测】检测和标记图片中的裂缝(Matlab代码实现)
|
9天前
|
传感器 机器学习/深度学习 编解码
【电缆】中压电缆局部放电的传输模型研究(Matlab代码实现)
【电缆】中压电缆局部放电的传输模型研究(Matlab代码实现)
|
10天前
|
算法 计算机视觉
【MPDR & SMI】失配广义夹角随输入信噪比变化趋势、输出信干噪比随输入信噪比变化趋势研究(Matlab代码实现)
【MPDR & SMI】失配广义夹角随输入信噪比变化趋势、输出信干噪比随输入信噪比变化趋势研究(Matlab代码实现)
|
10天前
|
编解码 人工智能 算法
【采用BPSK或GMSK的Turbo码】MSK、GMSK调制二比特差分解调、turbo+BPSK、turbo+GMSK研究(Matlab代码实现)
【采用BPSK或GMSK的Turbo码】MSK、GMSK调制二比特差分解调、turbo+BPSK、turbo+GMSK研究(Matlab代码实现)
|
10天前
|
机器学习/深度学习 编解码 并行计算
【改进引导滤波器】各向异性引导滤波器,利用加权平均来实现最大扩散,同时保持图像中的强边缘,实现强各向异性滤波,同时保持原始引导滤波器的低低计算成本(Matlab代码实现)
【改进引导滤波器】各向异性引导滤波器,利用加权平均来实现最大扩散,同时保持图像中的强边缘,实现强各向异性滤波,同时保持原始引导滤波器的低低计算成本(Matlab代码实现)
|
10天前
|
机器学习/深度学习 传感器 边缘计算
【故障诊断】基于时滞反馈随机共振的增强型旋转电机故障诊断(Matlab代码实现)
【故障诊断】基于时滞反馈随机共振的增强型旋转电机故障诊断(Matlab代码实现)
|
10天前
|
传感器 机器学习/深度学习 算法
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)

热门文章

最新文章

推荐镜像

更多