python中set和frozenset方法和区别

简介:

set(可变集合)与frozenset(不可变集合)的区别
set无序排序且不重复,是可变的,有add(),remove()等方法。既然是可变的,所以它不存在哈希值。基本功能包括关系测试和消除重复元素. 集合对象还支持union(联合), intersection(交集), difference(差集)和sysmmetric difference(对称差集)等数学运算. 
sets 支持 x in set, len(set),和 for x in set。作为一个无序的集合,sets不记录元素位置或者插入点。因此,sets不支持 indexing, 或其它类序列的操作。
frozenset是冻结的集合,它是不可变的,存在哈希值,好处是它可以作为字典的key,也可以作为其它集合的元素。缺点是一旦创建便不能更改,没有add,remove方法。


一、集合的创建

set()和 frozenset()工厂函数分别用来生成可变和不可变的集合。如果不提供任何参数,默认
会生成空集合。如果提供一个参数,则该参数必须是可迭代的,即,一个序列,或迭代器,或支持
迭代的一个对象,例如:一个列表或一个字典。

复制代码
 1 >>> s=set('cheeseshop')  使用工厂方法创建
 2 >>> s  3 {'h', 'c', 'o', 's', 'e', 'p'}  4 >>> type(s)  5 <type 'set'>  6 7 >>> s={'chessseshop','bookshop'}直接创建,类似于list的[]和dict的{},不同于dict的是其中的值,set会将其中的元素转换为元组  8 >>> s  9 {'bookshop', 'chessseshop'} 10 >>> type(s) 11 <type 'set'> 12 13 不可变集合创建: 14 >>> t=frozenset('bookshop') 15 >>> t 

16 frozenset({'h', 'o', 's', 'b', 'p', 'k'})

















本文转自张昺华-sky博客园博客,原文链接:http://www.cnblogs.com/bonelee/p/7867441.html,如需转载请自行联系原作者



相关文章
|
5天前
|
数据处理 Python
Python 高级技巧:深入解析读取 Excel 文件的多种方法
在数据分析中,从 Excel 文件读取数据是常见需求。本文介绍了使用 Python 的三个库:`pandas`、`openpyxl` 和 `xlrd` 来高效处理 Excel 文件的方法。`pandas` 提供了简洁的接口,而 `openpyxl` 和 `xlrd` 则针对不同版本的 Excel 文件格式提供了详细的数据读取和处理功能。此外,还介绍了如何处理复杂格式(如合并单元格)和进行性能优化(如分块读取)。通过这些技巧,可以轻松应对各种 Excel 数据处理任务。
32 16
|
1天前
|
存储 大数据 数据处理
Python 中的列表推导式与生成器:特性、用途与区别
Python 中的列表推导式与生成器:特性、用途与区别
8 2
|
1天前
|
Python
深入解析 Python 中的对象创建与初始化:__new__ 与 __init__ 方法
深入解析 Python 中的对象创建与初始化:__new__ 与 __init__ 方法
7 1
|
2天前
|
存储 C语言 Python
解密 Python 的变量和对象,它们之间有什么区别和联系呢?
解密 Python 的变量和对象,它们之间有什么区别和联系呢?
7 2
|
13天前
|
Python
python方法,传参20220101 计算与当前时间差
python方法,传参20220101 计算与当前时间差
|
13天前
|
存储 Python
Python中类方法、实例方法与静态方法的区别
这三种方法的正确使用可以使代码更加清晰、组织良好并且易于理解,从而有效地支持软件开发的面向对象编程范式。
12 1
|
1天前
|
Python
深入理解Python中的类方法、类实例方法和静态方法
深入理解Python中的类方法、类实例方法和静态方法
6 0
|
4天前
|
机器学习/深度学习 开发者 Python
Python中进行特征重要性分析的9个常用方法
在Python机器学习中,特征重要性分析是理解模型预测关键因素的重要步骤。本文介绍了九种常用方法:排列重要性、内置特征重要性(如`coef_`)、逐项删除法、相关性分析、递归特征消除(RFE)、LASSO回归、SHAP值、部分依赖图和互信息。这些方法适用于不同类型模型和场景,帮助识别关键特征,指导特征选择与模型解释。通过综合应用这些技术,可以提高模型的透明度和预测性能。
26 0
|
10天前
|
存储 编译器 Linux
Cython 和 Python 的区别
Cython 和 Python 的区别
18 0
|
12天前
|
机器学习/深度学习 PyTorch TensorFlow
Python实现深度学习学习率指数衰减的方法与参数介绍
学习率指数衰减提供了一种高效的动态调整学习率的手段,帮助模型在不同训练阶段以不同的学习速度优化,有利于提升模型性能和训练效率。通过合理设置衰减策略中的参数,可以有效地控制学习率的衰减过程,实现更加精确的模型训练调优。
13 0