计算机视觉实战(十三)停车场车位识别(附完整代码)

简介: 计算机视觉实战(十三)停车场车位识别(附完整代码)

要做以下几件事情:

  1. 一共有多少辆车。
  2. 有多少个空余的车位。
  3. 哪个停车位被占用了,哪个停车位没有被占用。

  读取图像:

  拿到图像之后,我们需要将其预处理,低于120,或者高于255的都处理为0。

def select_rgb_white_yellow(self,image): 
    #过滤掉背景
    lower = np.uint8([120, 120, 120])
    upper = np.uint8([255, 255, 255])
    # lower_red和高于upper_red的部分分别变成0,lower_red~upper_red之间的值变成255,相当于过滤背景
    white_mask = cv2.inRange(image, lower, upper)
    self.cv_show('white_mask',white_mask)
    masked = cv2.bitwise_and(image, image, mask = white_mask)
    self.cv_show('masked',masked)
    return masked

  然后再将其与原始图像做与操作,这样的话,只有原始图像是255的像素点留下来了。

  然后再做灰度处理,再做边缘检测:

  手动选择有效区域:

def select_region(self,image):
    """
            手动选择区域
    """
    # first, define the polygon by vertices
    rows, cols = image.shape[:2]
    pt_1  = [cols*0.05, rows*0.90]
    pt_2 = [cols*0.05, rows*0.70]
    pt_3 = [cols*0.30, rows*0.55]
    pt_4 = [cols*0.6, rows*0.15]
    pt_5 = [cols*0.90, rows*0.15] 
    pt_6 = [cols*0.90, rows*0.90]
    vertices = np.array([[pt_1, pt_2, pt_3, pt_4, pt_5, pt_6]], dtype=np.int32) 
    point_img = image.copy()       
    point_img = cv2.cvtColor(point_img, cv2.COLOR_GRAY2RGB)
    for point in vertices[0]:
        cv2.circle(point_img, (point[0],point[1]), 10, (0,0,255), 4)
    self.cv_show('point_img',point_img)
    return self.filter_region(image, vertices)

  之后做一个mask填充,然后将其分割出来:

def filter_region(self,image, vertices):
    """
            剔除掉不需要的地方
    """
    mask = np.zeros_like(image)
    if len(mask.shape)==2:
        cv2.fillPoly(mask, vertices, 255)
        self.cv_show('mask', mask)    
    return cv2.bitwise_and(image, mask)

  再利用霍夫变换检测直线,再过滤一些:

def hough_lines(self,image):
    #输入的图像需要是边缘检测后的结果
    #minLineLengh(线的最短长度,比这个短的都被忽略)和MaxLineCap(两条直线之间的最大间隔,小于此值,认为是一条直线)
    #rho距离精度,theta角度精度,threshod超过设定阈值才被检测出线段
    return cv2.HoughLinesP(image, rho=0.1, theta=np.pi/10, threshold=15, minLineLength=9, maxLineGap=4)
def draw_lines(self,image, lines, color=[255, 0, 0], thickness=2, make_copy=True):
    # 过滤霍夫变换检测到直线
    if make_copy:
        image = np.copy(image) 
    cleaned = []
    for line in lines:
        for x1,y1,x2,y2 in line:
            if abs(y2-y1) <=1 and abs(x2-x1) >=25 and abs(x2-x1) <= 55:
                cleaned.append((x1,y1,x2,y2))
                cv2.line(image, (x1, y1), (x2, y2), color, thickness)
    print(" No lines detected: ", len(cleaned))
    return image

def identify_blocks(self,image, lines, make_copy=True):
    if make_copy:
        new_image = np.copy(image)
    #Step 1: 过滤部分直线
    cleaned = []
    for line in lines:
        for x1,y1,x2,y2 in line:
            if abs(y2-y1) <=1 and abs(x2-x1) >=25 and abs(x2-x1) <= 55:
                cleaned.append((x1,y1,x2,y2))
    #Step 2: 对直线按照x1进行排序
    import operator
    list1 = sorted(cleaned, key=operator.itemgetter(0, 1))
    #Step 3: 找到多个列,相当于每列是一排车
    clusters = {}
    dIndex = 0
    clus_dist = 10
    for i in range(len(list1) - 1):
        distance = abs(list1[i+1][0] - list1[i][0])
        if distance <= clus_dist:
            if not dIndex in clusters.keys(): clusters[dIndex] = []
            clusters[dIndex].append(list1[i])
            clusters[dIndex].append(list1[i + 1]) 
        else:
            dIndex += 1
    #Step 4: 得到坐标
    rects = {}
    i = 0
    for key in clusters:
        all_list = clusters[key]
        cleaned = list(set(all_list))
        if len(cleaned) > 5:
            cleaned = sorted(cleaned, key=lambda tup: tup[1])
            avg_y1 = cleaned[0][1]
            avg_y2 = cleaned[-1][1]
            avg_x1 = 0
            avg_x2 = 0
            for tup in cleaned:
                avg_x1 += tup[0]
                avg_x2 += tup[2]
            avg_x1 = avg_x1/len(cleaned)
            avg_x2 = avg_x2/len(cleaned)
            rects[i] = (avg_x1, avg_y1, avg_x2, avg_y2)
            i += 1
    print("Num Parking Lanes: ", len(rects))
    #Step 5: 把列矩形画出来
    buff = 7
    for key in rects:
        tup_topLeft = (int(rects[key][0] - buff), int(rects[key][1]))
        tup_botRight = (int(rects[key][2] + buff), int(rects[key][3]))
        cv2.rectangle(new_image, tup_topLeft,tup_botRight,(0,255,0),3)
    return new_image, rects

  按列划分区域:

  再划分更细:

  之后再构建神经网络,对方框里面的图片进行分类。

  完整代码 :https://github.com/ZhiqiangHo/Opencv-Computer-Vision-Practice-Python-

我的微信公众号名称深度学习与先进智能决策

微信公众号ID:MultiAgent1024

公众号介绍:主要研究分享深度学习、机器博弈、强化学习等相关内容!期待您的关注,欢迎一起学习交流进步!

相关文章
|
7月前
|
机器学习/深度学习 算法 计算机视觉
计算机视觉实战项目3(图像分类+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A路径规划+单目测距与测速+行人车辆计数等)
计算机视觉实战项目3(图像分类+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A路径规划+单目测距与测速+行人车辆计数等)
132 2
|
7月前
|
机器学习/深度学习 算法 数据可视化
计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)-2
计算机视觉+深度学习+机器学习+opencv+目标检测跟踪+一站式学习(代码+视频+PPT)
|
2月前
|
机器学习/深度学习 PyTorch 算法框架/工具
聊一聊计算机视觉中常用的注意力机制以及Pytorch代码实现
本文介绍了几种常用的计算机视觉注意力机制及其PyTorch实现,包括SENet、CBAM、BAM、ECA-Net、SA-Net、Polarized Self-Attention、Spatial Group-wise Enhance和Coordinate Attention等,每种方法都附有详细的网络结构说明和实验结果分析。通过这些注意力机制的应用,可以有效提升模型在目标检测任务上的性能。此外,作者还提供了实验数据集的基本情况及baseline模型的选择与实验结果,方便读者理解和复现。
58 0
聊一聊计算机视觉中常用的注意力机制以及Pytorch代码实现
|
7月前
|
机器学习/深度学习 算法 计算机视觉
计算机视觉实战项目3(图像分类+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A*路径规划+单目测距与测速+行人车辆计数等)
计算机视觉实战项目3(图像分类+目标检测+目标跟踪+姿态识别+车道线识别+车牌识别+无人机检测+A*路径规划+单目测距与测速+行人车辆计数等)
|
2月前
|
计算机视觉 Python
计算机视觉---数字图像代码示例
计算机视觉---数字图像代码示例
50 0
|
3月前
|
人工智能 计算机视觉
AI计算机视觉笔记十五:编写检测的yolov5测试代码
该文为原创文章,如需转载,请注明出处。本文作者在成功运行 `detect.py` 后,因代码难以理解而编写了一个简易测试程序,用于加载YOLOv5模型并检测图像中的对象,特别是“人”类目标。代码实现了从摄像头或图片读取帧、进行颜色转换,并利用YOLOv5进行推理,最后将检测框和置信度绘制在输出图像上,并保存为 `result.jpg`。如果缺少某些模块,可使用 `pip install` 安装。如涉及版权问题或需获取完整代码,请联系作者。
|
4月前
|
机器学习/深度学习 算法 大数据
【2023年MathorCup高校数学建模挑战赛-大数据竞赛】赛道A:基于计算机视觉的坑洼道路检测和识别 python 代码解析
本文提供了2023年MathorCup高校数学建模挑战赛大数据竞赛赛道A的解决方案,涉及基于计算机视觉的坑洼道路检测和识别任务,包括数据预处理、特征提取、模型建立、训练与评估等步骤的Python代码解析。
85 0
【2023年MathorCup高校数学建模挑战赛-大数据竞赛】赛道A:基于计算机视觉的坑洼道路检测和识别 python 代码解析
|
7月前
|
机器学习/深度学习 编解码 监控
探索MATLAB在计算机视觉与深度学习领域的实战应用
探索MATLAB在计算机视觉与深度学习领域的实战应用
91 7
|
7月前
|
机器学习/深度学习 计算机视觉
AIGC核心技术——计算机视觉(CV)预训练大模型
【1月更文挑战第13天】AIGC核心技术——计算机视觉(CV)预训练大模型
638 3
AIGC核心技术——计算机视觉(CV)预训练大模型
|
3月前
|
人工智能 测试技术 API
AI计算机视觉笔记二十 九:yolov10竹签模型,自动数竹签
本文介绍了如何在AutoDL平台上搭建YOLOv10环境并进行竹签检测与计数。首先从官网下载YOLOv10源码并创建虚拟环境,安装依赖库。接着通过官方模型测试环境是否正常工作。然后下载自定义数据集并配置`mycoco128.yaml`文件,使用`yolo detect train`命令或Python代码进行训练。最后,通过命令行或API调用测试训练结果,并展示竹签计数功能。如需转载,请注明原文出处。

热门文章

最新文章