基于适应度距离平衡的全局优化问题导向机制的改进粘液-霉菌算法(Matlab代码实现)

本文涉及的产品
应用型负载均衡 ALB,每月750个小时 15LCU
网络型负载均衡 NLB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
简介: 基于适应度距离平衡的全局优化问题导向机制的改进粘液-霉菌算法(Matlab代码实现)

💥1 概述

在本文中,Slime-Mould-Algorithm(SMA)的性能得到了提高,这是一种当前的元启发式搜索算法。为了在SMA算法中更有效地对搜索过程生命周期过程进行建模,使用适应度-距离平衡(FDB)方法确定了指导搜索过程的候选解决方案。虽然SMA算法的性能被接受,但可以看出,由于应用FDB方法而开发的FDB-SMA算法的性能要好得多。CEC 2020 当前存在基准问题,用于测试开发的 FDB-SMA 算法的性能。从CEC 2020中选取的10个不同的无约束比较问题,将它们按30-50-100个维度排列,进行了设计。使用设计的比较问题进行实验研究,并用Friedman和Wilcoxon统计测试方法进行分析。根据分析结果,已经看到FDB-SMA变体在所有实验研究中都优于基本算法(SMA)。

📚2 运行结果

部分代码:

% Max_iter: maximum iterations, N: populatoin size, Convergence_curve: Convergence curve
% To run SMA: [Destination_fitness,bestPositions,Convergence_curve]=SMA(N,Max_iter,lb,ub,dim,fobj)
%function [Destination_fitness,bestPositions,Convergence_curve]=sma(N,Max_iter,lb,ub,dim,fobj)
function[] = FDB_sma_case_1()
disp('SMA is now tackling your problem')
[N,dim,Max_iter ,lb,ub]=problem_terminate();
%fhd=cec20so;
% initialize position
bestPositions=zeros(1,dim);
Destination_fitness=inf;%change this to -inf for maximization problems
AllFitness = inf*ones(N,1);%record the fitness of all slime mold
weight = ones(N,dim);%fitness weight of each slime mold
%Initialize the set of random solutions
X=initialization(N,dim,ub,lb);
Convergence_curve=zeros(1,Max_iter);
it=1;  %Number of iterations
lb=ones(1,dim).*lb; % lower boundary 
ub=ones(1,dim).*ub; % upper boundary
z=0.03; % parameter
% Main loop
while  it <= Max_iter
    disp(it)
    fdbindex = fitnessDistanceBalance( X, Destination_fitness );
    %sort the fitness
    for i=1:N
        % Check if solutions go outside the search space and bring them back
        Flag4ub=X(i,:)>ub;
        Flag4lb=X(i,:)<lb;
        X(i,:)=(X(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;
        %AllFitness(i) = fobj(X(i,:));
        AllFitness(i)=problem( X(i,:)' );
            it=it+1;
    end
    [SmellOrder,SmellIndex] = sort(AllFitness);  %Eq.(2.6)
    worstFitness = SmellOrder(N);
    bestFitness = SmellOrder(1);
    S=bestFitness-worstFitness+eps;  % plus eps to avoid denominator zero
    %calculate the fitness weight of each slime mold
    for i=1:N
        for j=1:dim
            if i<=(N/2)  %Eq.(2.5)
                weight(SmellIndex(i),j) = 1+rand()*log10((bestFitness-SmellOrder(i))/(S)+1);%fdb
            else
                weight(SmellIndex(i),j) = 1-rand()*log10((bestFitness-SmellOrder(i))/(S)+1);%fdb
            end
        end
    end
    %update the best fitness value and best position
    if bestFitness < Destination_fitness
        bestPositions=X(SmellIndex(1),:);
        Destination_fitness = bestFitness;
    end
    a = atanh(-(it/Max_iter)+1);   %Eq.(2.4)
    b = 1-it/Max_iter;
    % Update the Position of search agents
    for i=1:N
        if rand<z     %Eq.(2.7)
            X(i,:) = (ub-lb)*rand+lb;
        else
           if(rand<0.5)
            p =tanh(abs(AllFitness(fdbindex)-Destination_fitness));  %Eq.(2.2)%fdb
           else
            p =tanh(abs(AllFitness(i)-Destination_fitness));  %Eq.(2.2)%fdb   
           end
            vb = unifrnd(-a,a,1,dim);  %Eq.(2.3)
            vc = unifrnd(-b,b,1,dim);
            for j=1:dim
                r = rand();
                A = randi([1,N]);  % two positions randomly selected from population
                B = randi([1,N]);
                if r<p    %Eq.(2.1)
                   if(rand<0.5)
                    X(i,j) = bestPositions(j)+ vb(j)*(weight( fdbindex,j)*X(fdbindex,j)-X(fdbindex,j));%fdb
                   else
                    X(i,j) = bestPositions(j)+ vb(j)*(weight( i,j)*X(A,j)-X(B,j));%fdb
                   end
                else
                    X(i,j) = vc(j)*X(fdbindex,j);%fdb
                end
            end
        end
    end
    Convergence_curve(it)=Destination_fitness;
    %it=it+1;
end
bestSolution=bestPositions;
bestFitness= Destination_fitness;
iteration=it;
disp(it)
end
function Positions=initialization(SearchAgents_no,dim,ub,lb)
Boundary_no= size(ub,2); % numnber of boundaries
% If the boundaries of all variables are equal and user enter a signle
% number for both ub and lb
if Boundary_no==1
    Positions=rand(SearchAgents_no,dim).*(ub-lb)+lb;
end
% If each variable has a different lb and ub
if Boundary_no>1
    for i=1:dim
        ub_i=ub(i);
        lb_i=lb(i);
        Positions(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i;
    end
end
end

🌈3 Matlab代码实现

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。



[1]SUİÇMEZ, Ç., KAHRAMAN, H., YILMAZ, C., IŞIK, M. F., & CENGİZ, E. Improved Slime-Mould-Algorithm with Fitness Distance Balance-based Guiding Mechanism for Global Optimization Problems. Duzce University Journal of Science and Technology, 9(6), 40-54.

相关实践学习
小试牛刀,一键部署电商商城
SAE 仅需一键,极速部署一个微服务电商商城,体验 Serverless 带给您的全托管体验,一起来部署吧!
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
目录
打赏
0
0
0
0
78
分享
相关文章
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
本文系统讲解从基本强化学习方法到高级技术(如PPO、A3C、PlaNet等)的实现原理与编码过程,旨在通过理论结合代码的方式,构建对强化学习算法的全面理解。
51 10
18个常用的强化学习算法整理:从基础方法到高级模型的理论技术与代码实现
基于GA遗传优化TCN-GRU时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB2022a开发,提供无水印算法运行效果预览及核心程序(含详细中文注释与操作视频)。通过结合时间卷积神经网络(TCN)和遗传算法(GA),实现复杂非线性时间序列的高精度预测。TCN利用因果卷积层与残差连接提取时间特征,GA优化超参数(如卷积核大小、层数等),显著提升模型性能。项目涵盖理论概述、程序代码及完整实现流程,适用于金融、气象、工业等领域的时间序列预测任务。
基于遗传优化算法的多AGV栅格地图路径规划matlab仿真
本程序基于遗传优化算法实现多AGV栅格地图路径规划的MATLAB仿真(测试版本:MATLAB2022A)。支持单个及多个AGV路径规划,输出路径结果与收敛曲线。核心程序代码完整,无水印。算法适用于现代工业与物流场景,通过模拟自然进化机制(选择、交叉、变异)解决复杂环境下的路径优化问题,有效提升效率并避免碰撞。适合学习研究多AGV系统路径规划技术。
基于和声搜索优化算法的机器工作调度matlab仿真,输出甘特图
本程序基于和声搜索优化算法(Harmony Search, HS),实现机器工作调度的MATLAB仿真,输出甘特图展示调度结果。算法通过模拟音乐家即兴演奏寻找最佳和声的过程,优化任务在不同机器上的执行顺序,以最小化完成时间和最大化资源利用率为目标。程序适用于MATLAB 2022A版本,运行后无水印。核心参数包括和声记忆大小(HMS)等,适应度函数用于建模优化目标。附带完整代码与运行结果展示。
基于GA遗传优化TCN时间卷积神经网络时间序列预测算法matlab仿真
本内容介绍了一种基于遗传算法优化的时间卷积神经网络(TCN)用于时间序列预测的方法。算法运行于 Matlab2022a,完整程序无水印,附带核心代码、中文注释及操作视频。TCN通过因果卷积层与残差连接学习时间序列复杂特征,但其性能依赖超参数设置。遗传算法通过对种群迭代优化,确定最佳超参数组合,提升预测精度。此方法适用于金融、气象等领域,实现更准确可靠的未来趋势预测。
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。
云计算任务调度优化matlab仿真,对比蚁群优化和蛙跳优化
本程序针对云计算任务调度优化问题,旨在减少任务消耗时间、提升经济效益并降低设备功耗。通过对比蚁群优化算法(ACO)与蛙跳优化算法(SFLA),分别模拟蚂蚁信息素路径选择及青蛙跳跃行为,在MATLAB2022A环境下运行测试。核心代码实现任务分配方案的动态调整与目标函数优化,结合任务集合T与服务器集合S,综合考量处理时间与能耗等约束条件,最终输出优化结果。两种算法各具优势,为云计算任务调度提供有效解决方案。
基于NSGAII的的柔性作业调度优化算法MATLAB仿真,仿真输出甘特图
本程序基于NSGA-II算法实现柔性作业调度优化,适用于多目标优化场景(如最小化完工时间、延期、机器负载及能耗)。核心代码完成任务分配与甘特图绘制,支持MATLAB 2022A运行。算法通过初始化种群、遗传操作和选择策略迭代优化调度方案,最终输出包含完工时间、延期、机器负载和能耗等关键指标的可视化结果,为制造业生产计划提供科学依据。
基于BBO生物地理优化的三维路径规划算法MATLAB仿真
本程序基于BBO生物地理优化算法,实现三维空间路径规划的MATLAB仿真(测试版本:MATLAB2022A)。通过起点与终点坐标输入,算法可生成避障最优路径,并输出优化收敛曲线。BBO算法将路径视为栖息地,利用迁移和变异操作迭代寻优。适应度函数综合路径长度与障碍物距离,确保路径最短且安全。程序运行结果完整、无水印,适用于科研与教学场景。
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等