基于适应度距离平衡的全局优化问题导向机制的改进粘液-霉菌算法(Matlab代码实现)

本文涉及的产品
网络型负载均衡 NLB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
应用型负载均衡 ALB,每月750个小时 15LCU
简介: 基于适应度距离平衡的全局优化问题导向机制的改进粘液-霉菌算法(Matlab代码实现)

💥1 概述

在本文中,Slime-Mould-Algorithm(SMA)的性能得到了提高,这是一种当前的元启发式搜索算法。为了在SMA算法中更有效地对搜索过程生命周期过程进行建模,使用适应度-距离平衡(FDB)方法确定了指导搜索过程的候选解决方案。虽然SMA算法的性能被接受,但可以看出,由于应用FDB方法而开发的FDB-SMA算法的性能要好得多。CEC 2020 当前存在基准问题,用于测试开发的 FDB-SMA 算法的性能。从CEC 2020中选取的10个不同的无约束比较问题,将它们按30-50-100个维度排列,进行了设计。使用设计的比较问题进行实验研究,并用Friedman和Wilcoxon统计测试方法进行分析。根据分析结果,已经看到FDB-SMA变体在所有实验研究中都优于基本算法(SMA)。

📚2 运行结果

部分代码:

% Max_iter: maximum iterations, N: populatoin size, Convergence_curve: Convergence curve
% To run SMA: [Destination_fitness,bestPositions,Convergence_curve]=SMA(N,Max_iter,lb,ub,dim,fobj)
%function [Destination_fitness,bestPositions,Convergence_curve]=sma(N,Max_iter,lb,ub,dim,fobj)
function[] = FDB_sma_case_1()
disp('SMA is now tackling your problem')
[N,dim,Max_iter ,lb,ub]=problem_terminate();
%fhd=cec20so;
% initialize position
bestPositions=zeros(1,dim);
Destination_fitness=inf;%change this to -inf for maximization problems
AllFitness = inf*ones(N,1);%record the fitness of all slime mold
weight = ones(N,dim);%fitness weight of each slime mold
%Initialize the set of random solutions
X=initialization(N,dim,ub,lb);
Convergence_curve=zeros(1,Max_iter);
it=1;  %Number of iterations
lb=ones(1,dim).*lb; % lower boundary 
ub=ones(1,dim).*ub; % upper boundary
z=0.03; % parameter
% Main loop
while  it <= Max_iter
    disp(it)
    fdbindex = fitnessDistanceBalance( X, Destination_fitness );
    %sort the fitness
    for i=1:N
        % Check if solutions go outside the search space and bring them back
        Flag4ub=X(i,:)>ub;
        Flag4lb=X(i,:)<lb;
        X(i,:)=(X(i,:).*(~(Flag4ub+Flag4lb)))+ub.*Flag4ub+lb.*Flag4lb;
        %AllFitness(i) = fobj(X(i,:));
        AllFitness(i)=problem( X(i,:)' );
            it=it+1;
    end
    [SmellOrder,SmellIndex] = sort(AllFitness);  %Eq.(2.6)
    worstFitness = SmellOrder(N);
    bestFitness = SmellOrder(1);
    S=bestFitness-worstFitness+eps;  % plus eps to avoid denominator zero
    %calculate the fitness weight of each slime mold
    for i=1:N
        for j=1:dim
            if i<=(N/2)  %Eq.(2.5)
                weight(SmellIndex(i),j) = 1+rand()*log10((bestFitness-SmellOrder(i))/(S)+1);%fdb
            else
                weight(SmellIndex(i),j) = 1-rand()*log10((bestFitness-SmellOrder(i))/(S)+1);%fdb
            end
        end
    end
    %update the best fitness value and best position
    if bestFitness < Destination_fitness
        bestPositions=X(SmellIndex(1),:);
        Destination_fitness = bestFitness;
    end
    a = atanh(-(it/Max_iter)+1);   %Eq.(2.4)
    b = 1-it/Max_iter;
    % Update the Position of search agents
    for i=1:N
        if rand<z     %Eq.(2.7)
            X(i,:) = (ub-lb)*rand+lb;
        else
           if(rand<0.5)
            p =tanh(abs(AllFitness(fdbindex)-Destination_fitness));  %Eq.(2.2)%fdb
           else
            p =tanh(abs(AllFitness(i)-Destination_fitness));  %Eq.(2.2)%fdb   
           end
            vb = unifrnd(-a,a,1,dim);  %Eq.(2.3)
            vc = unifrnd(-b,b,1,dim);
            for j=1:dim
                r = rand();
                A = randi([1,N]);  % two positions randomly selected from population
                B = randi([1,N]);
                if r<p    %Eq.(2.1)
                   if(rand<0.5)
                    X(i,j) = bestPositions(j)+ vb(j)*(weight( fdbindex,j)*X(fdbindex,j)-X(fdbindex,j));%fdb
                   else
                    X(i,j) = bestPositions(j)+ vb(j)*(weight( i,j)*X(A,j)-X(B,j));%fdb
                   end
                else
                    X(i,j) = vc(j)*X(fdbindex,j);%fdb
                end
            end
        end
    end
    Convergence_curve(it)=Destination_fitness;
    %it=it+1;
end
bestSolution=bestPositions;
bestFitness= Destination_fitness;
iteration=it;
disp(it)
end
function Positions=initialization(SearchAgents_no,dim,ub,lb)
Boundary_no= size(ub,2); % numnber of boundaries
% If the boundaries of all variables are equal and user enter a signle
% number for both ub and lb
if Boundary_no==1
    Positions=rand(SearchAgents_no,dim).*(ub-lb)+lb;
end
% If each variable has a different lb and ub
if Boundary_no>1
    for i=1:dim
        ub_i=ub(i);
        lb_i=lb(i);
        Positions(:,i)=rand(SearchAgents_no,1).*(ub_i-lb_i)+lb_i;
    end
end
end

🌈3 Matlab代码实现

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。



[1]SUİÇMEZ, Ç., KAHRAMAN, H., YILMAZ, C., IŞIK, M. F., & CENGİZ, E. Improved Slime-Mould-Algorithm with Fitness Distance Balance-based Guiding Mechanism for Global Optimization Problems. Duzce University Journal of Science and Technology, 9(6), 40-54.

相关实践学习
SLB负载均衡实践
本场景通过使用阿里云负载均衡 SLB 以及对负载均衡 SLB 后端服务器 ECS 的权重进行修改,快速解决服务器响应速度慢的问题
负载均衡入门与产品使用指南
负载均衡(Server Load Balancer)是对多台云服务器进行流量分发的负载均衡服务,可以通过流量分发扩展应用系统对外的服务能力,通过消除单点故障提升应用系统的可用性。 本课程主要介绍负载均衡的相关技术以及阿里云负载均衡产品的使用方法。
相关文章
|
3天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
110 80
|
8天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
16天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
16天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
21天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
21天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
19天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
2天前
|
算法
基于EO平衡优化器算法的目标函数最优值求解matlab仿真
本程序基于进化优化(EO)中的平衡优化器算法,在MATLAB2022A上实现九个测试函数的最优值求解及优化收敛曲线仿真。平衡优化器通过模拟生态系统平衡机制,动态调整搜索参数,确保种群多样性与收敛性的平衡,高效搜索全局或近全局最优解。程序核心为平衡优化算法,结合粒子群优化思想,引入动态调整策略,促进快速探索与有效利用解空间。
|
22天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
28天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。

热门文章

最新文章