通过EEMD进行心脏频率和心电图信号去噪(Matlab代码实现)

简介: 通过EEMD进行心脏频率和心电图信号去噪(Matlab代码实现)

💥1 概述

本文使用集成经验模式分解和希尔伯特变换的R峰值检测(心脏频率)进行心电图信号去噪。

该项目的目的是通过使用集成经验模式分解的新方法(一种去噪生物信号的新方法)来过滤和去噪生理信号(在这种情况下,选择心脏信号心电图)。此外,使用希尔伯特变换来记录心脏频率。


📚2 运行结果

 

🎉3 参考文献

[1]张勇,王介生.基于多分辨率分析的心电图信号去噪算法[J].系统工程与电子技术,2002(12):32-34.

👨‍💻4 Matlab代码

主函数部分代码:

%Final Project. Biosignals processing.
%EMD denoising and R peak detention of ECG signal using Hilbert Transform.
clear all;
close all;
clc;
%% Data Loading
ecg=load ('ecg1.mat');          % loading the signal 
ecg=struct2cell(ecg);
ecg=cell2mat(ecg);
ecg = (ecg - 1024)/200;     % you have to remove "base" and "gain"
ecg1=ecg(1,:);              %Noisy ecg
ecg2=ecg(2,:);              %filtered ecg
Fs =500;                    % sampling frequecy
t =linspace(0,length(ecg1)/Fs,length(ecg1)); %time vector
%% ECG signal denoising
imf=eemd(ecg1,.2,70); %Apply the EEMD to the noisy signal .2->ratio of the standard deviation 70->ensemble number
imfs=imf';             %transpose the imf's matrix
reconstruction=imfs(4,:)+imfs(5,:)+imfs(6,:);  %We consider that these 3 imf's possess the important information
%4 order Butterworth filter bandpass .05-230Hz. 
fclowpass=230; % Low pass cut-off frequency 230Hz
fchighpass=.05; % Low pass cut-off frequency .05Hz
filterorder=4;  %filter order
[b,a]=butter(filterorder,[filterorder*fchighpass/Fs,2*fclowpass/Fs]);
filtered_ECG=filter(b,a,reconstruction);
%% Emphasizing R peaks of the ECG
%Getting the maxima and minima of the ECG signal, to emphasize the R peaks
decg=(1/Fs)*(diff(filtered_ECG));  %derivative of the ecg
hecg=hilbert(decg); %hilbert transform of the derivative. 
envelope=abs(hecg);  %It returns the envelope of the ecg
%% R peaks detection 
maximum=(max(envelope));
Threshold=.6*(maximum); 
[pks,locs] = findpeaks(envelope,'MinPeakHeight',Threshold);
time=(1/Fs)*length(ecg1);
timefactor=60/time;
cardiacFreq=round(timefactor*length(pks));
%% Plots
figure (1)
plot(t,ecg1); xlabel('time (s)'); ylabel('mV'); title('Raw ECG');
figure(2)
subplot(7,1,1);
plot(t,imfs(1,:)); xlabel('time (s)'); ylabel('mV'); title('Original ECG');
subplot(7,1,2);
plot(t,imfs(2,:)); xlabel('time (s)'); ylabel('mV'); title('1st IMF');
subplot(7,1,3);
plot(t,imfs(3,:)); xlabel('time (s)'); ylabel('mV'); title('2nd IMF');
subplot(7,1,4);
plot(t,imfs(4,:)); xlabel('time (s)'); ylabel('mV'); title('3rd IMF');
subplot(7,1,5);
plot(t,imfs(5,:)); xlabel('time (s)'); ylabel('mV'); title('4th IMF');
subplot(7,1,6);
plot(t,imfs(6,:)); xlabel('time (s)'); ylabel('mV'); title('5th IMF');
subplot(7,1,7);
plot(t,imfs(7,:)); xlabel('time (s)'); ylabel('mV'); title('6th IMF');
figure (3)
subplot(7,1,1);
plot(t,imfs(8,:)); xlabel('time (s)'); ylabel('mV'); title('7th IMF');
subplot(7,1,2);
plot(t,imfs(9,:)); xlabel('time (s)'); ylabel('mV'); title('8th IMF');
subplot(7,1,3);
plot(t,imfs(10,:)); xlabel('time (s)'); ylabel('mV'); title('9th IMF');
subplot(7,1,4);
plot(t,imfs(11,:)); xlabel('time (s)'); ylabel('mV'); title('10th IMF');
subplot(7,1,5);
plot(t,imfs(12,:)); xlabel('time (s)'); ylabel('mV'); title('11th IMF');
subplot(7,1,6);
plot(t,imfs(13,:)); xlabel('time (s)'); ylabel('mV'); title('12th IMF');
subplot(7,1,7);
plot(t,imfs(14,:)); xlabel('time (s)'); ylabel('mV'); title('13th IMF');
figure (4)
plot(t,reconstruction); xlabel('time (s)'); ylabel('mV'); title('IMFs reconstruction');
figure(5)
plot(t,filtered_ECG); xlabel('time (s)'); ylabel('mV'); title('Filtered ECG (IMF+bandPass)');
figure(6)
plot(t(1:9999),decg); xlabel('time (s)'); ylabel('d(ECG)/dt'); title('ECG derivative');
figure(7)
plot(t(1:9999),hecg); xlabel('time (s)'); ylabel('H(d(ECG)/dt)'); title('Hilbert Transform of derivate');
figure(8)
plot(t(1:9999),envelope); xlabel('time (s)'); ylabel('B(d(ECG)/dt)'); title('Envelope');
figure (9)
plot(t(1:9999),envelope,locs,pks,'or');
legend('ECG','R peaks','Location','NorthWest');


相关文章
|
11天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
本研究基于MATLAB 2022a,使用GRU网络对QAM调制信号进行检测。QAM是一种高效调制技术,广泛应用于现代通信系统。传统方法在复杂环境下性能下降,而GRU通过门控机制有效提取时间序列特征,实现16QAM、32QAM、64QAM、128QAM的准确检测。仿真结果显示,GRU在低SNR下表现优异,且训练速度快,参数少。核心程序包括模型预测、误检率和漏检率计算,并绘制准确率图。
83 65
基于GRU网络的MQAM调制信号检测算法matlab仿真,对比LSTM
|
5天前
|
编解码 算法 数据安全/隐私保护
基于FPGA的信号DM编解码实现,包含testbench和matlab对比仿真
本项目展示了DM编解码算法的实现与测试结果。FPGA测试结果显示为T1,Matlab仿真结果为T2。使用软件版本为Matlab 2022a和Vivado 2019.2。核心程序包含详细中文注释和操作视频。DM编解码通过比较信号样本差值进行编码,适用于音频等低频信号处理。硬件结构包括编码器(采样器、减法器、比较器)和解码器(解码器、积分器)。
|
8天前
|
编解码 算法 数据安全/隐私保护
一维信号的小波变换与重构算法matlab仿真
本程序使用MATLAB2022A实现一维信号的小波变换与重构,对正弦测试信号进行小波分解和重构,并计算重构信号与原信号的误差。核心步骤包括:绘制分解系数图像、上抽取与滤波重构、对比原始与重构信号及误差分析。小波变换通过多分辨率分析捕捉信号的局部特征,适用于非平稳信号处理,在信号去噪、压缩等领域有广泛应用。
|
2月前
|
算法
基于梯度流的扩散映射卡尔曼滤波算法的信号预处理matlab仿真
本项目基于梯度流的扩散映射卡尔曼滤波算法(GFDMKF),用于信号预处理的MATLAB仿真。通过设置不同噪声大小,测试滤波效果。核心代码实现数据加载、含噪信号生成、扩散映射构建及DMK滤波器应用,并展示含噪与无噪信号及滤波结果的对比图。GFDMKF结合非线性流形学习与经典卡尔曼滤波,提高对非线性高维信号的滤波和跟踪性能。 **主要步骤:** 1. 加载数据并生成含噪测量值。 2. 使用扩散映射捕捉低维流形结构。 3. 应用DMK滤波器进行状态估计。 4. 绘制不同SNR下的轨迹示例。
|
4月前
|
运维 算法
基于Lipschitz李式指数的随机信号特征识别和故障检测matlab仿真
本程序基于Lipschitz李式指数进行随机信号特征识别和故障检测。使用MATLAB2013B版本运行,核心功能包括计算Lipschitz指数、绘制指数曲线、检测故障信号并标记异常区域。Lipschitz指数能够反映信号的局部动态行为,适用于机械振动分析等领域的故障诊断。
|
7月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
284 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
7月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
169 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
6月前
|
机器学习/深度学习 算法
基于心电信号时空特征的QRS波检测算法matlab仿真
本课题旨在通过提取ECG信号的时空特征并应用QRS波检测算法识别心电信号中的峰值。使用MATLAB 2022a版本实现系统仿真,涵盖信号预处理、特征提取、特征选择、阈值设定及QRS波检测等关键步骤,以提高心脏疾病诊断准确性。预处理阶段采用滤波技术去除噪声,检测算法则结合了一阶导数和二阶导数计算确定QRS波峰值。
|
7月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
143 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
基于高通滤波器的ECG信号滤波及心率统计matlab仿真
**摘要:** 使用MATLAB2022a,实施高通滤波对ECG信号预处理,消除基线漂移,随后分析心率。系统仿真展示效果,核心代码涉及IIR HPF设计,如二阶滤波器的差分方程。通过滤波后的信号,检测R波计算RR间期,从而得到心率。滤波与R波检测是心电生理研究的关键步骤,平衡滤波性能与计算资源是设计挑战。

热门文章

最新文章