基于改进的DBN降水预测方法(Matlab代码实现)

简介: 基于改进的DBN降水预测方法(Matlab代码实现)

💥1 概述

精确高效的降水预测模型可以更好地反映未来的气候,为管理决策提供重要参考,帮助人们为未来的恶劣天气做好准备。


深度信念网络,DBN,Deep Belief Nets,神经网络的一种。既可以用于非监督学习,类似于一个自编码机;也可以用于监督学习,作为分类器来使用。


从非监督学习来讲,其目的是尽可能地保留原始特征的特点,同时降低特征的维度。从监督学习来讲,其目的在于使得分类错误率尽可能地小。而不论是监督学习还是非监督学习,DBN的本质都是Feature Learning的过程,即如何得到更好的特征表达。


作为神经网络,神经元自然是其必不可少的组成部分。DBN由若干层神经元构成,组成元件是受限玻尔兹曼机(RBM)。


先了解下RBM:


RBM 只有两层神经元,一层叫做显层 (visible layer),由显元 (visible units) 组成,用于输入训练数据。另一层叫做隐层 (Hidden layer),相应地,由隐元 (hidden units)组成,用作特征检测器 (feature detectors)。


📚2 运行结果

🎉3 参考文献

[1]赵华生,金龙,农吉夫,陈春涛.降水预报的神经网络集成方法的改进[J].统计与决策,2008(10):26-28.

👨‍💻4 Matlab代码

主函数部分代码:

clc;clear;close all;  
%% 初始化种群  
f= @(x)x .* sin(x) .* cos(2 * x) - 2 * x .* sin(3 * x); % 函数表达式  
figure(1);ezplot(f,[0,0.01,20]);  
N = 50;                         % 初始种群个数  
d = 1;                          % 空间维数  
ger = 100;                      % 最大迭代次数       
limit = [0, 20];                % 设置位置参数限制  
vlimit = [-1, 1];               % 设置速度限制  
w = 0.8;                        % 惯性权重  
c1 = 0.5;                       % 自我学习因子  
c2 = 0.5;                       % 群体学习因子   
for i = 1:d  
    x = limit(i, 1) + (limit(i, 2) - limit(i, 1)) * rand(N, d);%初始种群的位置  
end  
v = rand(N, d);                  % 初始种群的速度  
xm = x;                          % 每个个体的历史最佳位置  
ym = zeros(1, d);                % 种群的历史最佳位置  
fxm = zeros(N, 1);               % 每个个体的历史最佳适应度  
fym = -inf;                      % 种群历史最佳适应度  
hold on  
plot(xm, f(xm), 'ro');title('初始状态图');  
figure(2)  
%% 群体更新  
iter = 1;  
record = zeros(ger, 1);          % 记录器  
while iter <= ger  
     fx = f(x) ; % 个体当前适应度     
     for i = 1:N        
        if fxm(i) < fx(i)  
            fxm(i) = fx(i);     % 更新个体历史最佳适应度  
            xm(i,:) = x(i,:);   % 更新个体历史最佳位置  
        end   
     end  
if fym < max(fxm)  
        [fym, nmax] = max(fxm);   % 更新群体历史最佳适应度  
        ym = xm(nmax, :);      % 更新群体历史最佳位置  
 end  
    v = v * w + c1 * rand * (xm - x) + c2 * rand * (repmat(ym, N, 1) - x);% 速度更新  
    % 边界速度处理  
    v(v > vlimit(2)) = vlimit(2);  
    v(v < vlimit(1)) = vlimit(1);  
    x = x + v;% 位置更新  
    % 边界位置处理  
    x(x > limit(2)) = limit(2);  
    x(x < limit(1)) = limit(1);  
    record(iter) = fym;%最大值记录  
%     x0 = 0 : 0.01 : 20;  
%     plot(x0, f(x0), 'b-', x, f(x), 'ro');title('状态位置变化')  
%     pause(0.1)  
    iter = iter+1;  
end  
相关文章
|
7月前
|
算法 数据安全/隐私保护 计算机视觉
基于二维CS-SCHT变换和LABS方法的水印嵌入和提取算法matlab仿真
该内容包括一个算法的运行展示和详细步骤,使用了MATLAB2022a。算法涉及水印嵌入和提取,利用LAB色彩空间可能用于隐藏水印。水印通过二维CS-SCHT变换、低频系数处理和特定解码策略来提取。代码段展示了水印置乱、图像处理(如噪声、旋转、剪切等攻击)以及水印的逆置乱和提取过程。最后,计算并保存了比特率,用于评估水印的稳健性。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
212 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
135 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
存储 算法 Serverless
【matlab】matlab基于DTW和HMM方法数字语音识别系统(源码+音频文件+GUI界面)【独一无二】
【matlab】matlab基于DTW和HMM方法数字语音识别系统(源码+音频文件+GUI界面)【独一无二】
|
4月前
|
计算机视觉
【图像处理】基于灰度矩的亚像素边缘检测方法理论及MATLAB实现
基于灰度矩的亚像素边缘检测方法,包括理论基础和MATLAB实现,通过计算图像的灰度矩来精确定位边缘位置,并提供了详细的MATLAB代码和实验结果图。
111 6
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
96 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
4月前
|
算法 数据安全/隐私保护
基于星座图整形方法的QAM调制解调系统MATLAB误码率仿真,对比16,32,64,256四种QAM调制方式
本MATLAB 2022a仿真展示了不同QAM阶数下的星座图及误码率性能,通过星座图整形技术优化了系统性能。该技术利用非均匀分布的星座点提高功率效率,并通过合理布局增强抗干扰能力。随着QAM阶数增加,数据传输速率提升,但对信道质量要求也更高。核心程序实现了从比特生成到QAM映射、功率归一化、加噪及解调的全过程,并评估了系统误码率。
80 0
|
5月前
|
算法 vr&ar
基于自适应波束成形算法的matlab性能仿真,对比SG和RLS两种方法
```markdown - MATLAB2022a中比较SG与RLS自适应波束成形算法。核心程序实现阵列信号处理,强化期望信号,抑制干扰。RLS以其高效计算权重,而SG则以简单和低计算复杂度著称。[12345] [6666666666] [777777] ```
|
7月前
|
算法 数据安全/隐私保护 C++
基于二维CS-SCHT变换和扩频方法的彩色图像水印嵌入和提取算法matlab仿真
该内容是关于一个图像水印算法的描述。在MATLAB2022a中运行,算法包括水印的嵌入和提取。首先,RGB图像转换为YUV格式,然后水印通过特定规则嵌入到Y分量中,并经过Arnold置乱增强安全性。水印提取时,经过逆过程恢复,使用了二维CS-SCHT变换和噪声对比度(NC)计算来评估水印的鲁棒性。代码中展示了从RGB到YUV的转换、水印嵌入、JPEG压缩攻击模拟以及水印提取的步骤。
|
5月前
|
算法 安全 数据挖掘
随机数生成方法及其在Matlab中的应用
随机数生成方法及其在Matlab中的应用