【水光互补优化调度】基于非支配排序遗传算法的多目标水光互补优化调度(Matlab代码实现)

简介: 【水光互补优化调度】基于非支配排序遗传算法的多目标水光互补优化调度(Matlab代码实现)

💥1 概述

参考文献:

然后本文换一个算法进行解决,也算一个创新点吧:


基于非支配排序遗传算法的多目标水光互补优化调度,然后用Matlab实现之。


近些年,人类对环境问题和资源枯竭关注日益增大,使得以光伏为代表的新能源发电得到了大规模的发展。截至2015年底,中国光伏发电累计装机容量4318万千瓦,成为全球光伏发电装机容量最大的国家[1]。但是,光伏具有“随机性、间歇性和波动性”的特点[2-4]。光伏发电的并网对电力系统的规划、安全、调度和控制等方面的影响也越来越大。虽然光伏的装机容量很大,但是并网消纳仍是一个有待解决的问题[5-6]。水电是一种清洁可再生的能源,其出力具有快速调节的优良性能,在电力系统中常常担任调峰的任务[7]。利用水电出力的特点来平衡光伏出力的波动,可以为电网提供更多的优质电能。世界上第一座水光互补电站2009年在青海玉树建成[8],到2015年全球最大的龙羊峡水光互补电站的建成[9],水光互补已得到了全世界的广泛关注。


1.1 水光互补

水光互补是指水电和光伏联合运行,利用水电机组快速调节的优良特性以及水电站的库容调节光伏出力的“随机性、波动性和间歇性”,同时光伏可以在水电匮乏时给予联合系统电量上的支持。

水电和光伏在年际、年内、日内有很好的互补特性。

.年际、年内互补特性

水电的发电量取决于径流的多少,径流在年内和年际间相差悬殊,年际有丰水年和枯水年之分,年内有丰、枯水期。水电在丰水年发电多、枯水年发电少,冬春季发电量少、夏秋季发电量多。相对而言,太阳能年际间波动很小,光电的年发电量几乎是恒定值;光伏发电还具有冬春季发电量大、夏秋季发电量小的季节性特点。光伏在水电匮乏时可以为联合系统提供电量上的支撑,减少系统负荷的缺额,因此,水电和光伏发电在年际和年内都存在很好地互补关系。

日内互补特性

光伏发电取决于环境条件,光伏出力呈现“间歇性、随机性和波动性”地特点。在一天之内,水电可以利用机组的快速调节性能来平抑光伏出力的“随机性和波动性”;光伏只在白天出力,在夜间的出力几乎为零,水电可以平衡光伏出力的“间歇性”[10]。因此,水电和光伏发电在日内也存在着很好的互补关系,如图1所示。

           

1.2 水光互补模型——目标函数和约束条件

水光互补的运行模式为以水电和光伏联合运行,以光伏出力为基荷,用水电来调节光伏出力,为了保证下游的用水,水电站在调度期内的出库流量恒定。在此模式下,建立水光互补调峰能力的模型,并考虑了各种约束条件。

目标函数

两个目标,所有本文考虑用多目标优化算法解决之,没有用参考文献的方法。

水电出力的约束

功率平衡约束

其他约束

1.3 多目标遗传算法

多目标优化NSGA-II(非支配排序常见于遗传算法)

📚2 运行结果

🌈3 Matlab代码实现

部分代码:

%% NSGA-II Parameters
MaxIt=70;      % Maximum Number of Iterations
nPop=80;        % Population Size
pCrossover=0.7;                         % Crossover Percentage
nCrossover=2*round(pCrossover*nPop/2);  % Number of Parnets (Offsprings)
pMutation=0.4;                          % Mutation Percentage
nMutation=round(pMutation*nPop);        % Number of Mutants
mu=0.02;                    % Mutation Rate
sigma=0.1*(VarMax-VarMin);  % Mutation Step Size
%% Initialization
empty_individual.Position=[];
empty_individual.Cost=[];
empty_individual.Rank=[];
empty_individual.DominationSet=[];
empty_individual.DominatedCount=[];
empty_individual.CrowdingDistance=[];
pop=repmat(empty_individual,nPop,1);
disp('产生初始可行解...')
for i=1:nPop   
    flag=0;
    while flag==0
        tmp=[];
        for j=1:1:nVar
            tmp = [tmp unifrnd(VarMin(j),VarMax(j),1)];
        end
        flag = test(tmp);     % 检查约束 约束不满足就重新生成解
    end
    pop(i).Position=tmp;
    pop(i).Cost=CostFunction(pop(i).Position);
end
% pause
% Non-Dominated Sorting
[pop, F]=NonDominatedSorting(pop);
% Calculate Crowding Distance
pop=CalcCrowdingDistance(pop,F);
% Sort Population
[pop, F]=SortPopulation(pop);
%% NSGA-II Main Loop
for it=1:MaxIt
    % 交叉
    popc=repmat(empty_individual,nCrossover/2,2);
    for k=1:nCrossover/2
        i1=randi([1 nPop]);
        p1=pop(i1);
        i2=randi([1 nPop]);
        p2=pop(i2);
        [popc(k,1).Position, popc(k,2).Position]=Crossover(p1.Position,p2.Position,VarMin,VarMax);
        if test(popc(k,1).Position)+test(popc(k,2).Position)==2
            popc(k,1).Cost=CostFunction(popc(k,1).Position);
            popc(k,2).Cost=CostFunction(popc(k,2).Position);
        else
            popc(k,1)=p1;
            popc(k,2)=p2;
        end

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]丁航,安源,王颂凯,王浩. 水光互补的短期优化调度[C]//.2016第二届能源,环境与地球科学国际会议论文集.[出版者不详],2016:21-26.

相关文章
|
8天前
|
算法
基于GA遗传算法的PID控制器参数优化matlab建模与仿真
本项目基于遗传算法(GA)优化PID控制器参数,通过空间状态方程构建控制对象,自定义GA的选择、交叉、变异过程,以提高PID控制性能。与使用通用GA工具箱相比,此方法更灵活、针对性强。MATLAB2022A环境下测试,展示了GA优化前后PID控制效果的显著差异。核心代码实现了遗传算法的迭代优化过程,最终通过适应度函数评估并选择了最优PID参数,显著提升了系统响应速度和稳定性。
|
6天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
29天前
|
搜索推荐 算法 C语言
【排序算法】八大排序(上)(c语言实现)(附源码)
本文介绍了四种常见的排序算法:冒泡排序、选择排序、插入排序和希尔排序。通过具体的代码实现和测试数据,详细解释了每种算法的工作原理和性能特点。冒泡排序通过不断交换相邻元素来排序,选择排序通过选择最小元素进行交换,插入排序通过逐步插入元素到已排序部分,而希尔排序则是插入排序的改进版,通过预排序使数据更接近有序,从而提高效率。文章最后总结了这四种算法的空间和时间复杂度,以及它们的稳定性。
78 8
|
1月前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
29天前
|
搜索推荐 算法 C语言
【排序算法】八大排序(下)(c语言实现)(附源码)
本文继续学习并实现了八大排序算法中的后四种:堆排序、快速排序、归并排序和计数排序。详细介绍了每种排序算法的原理、步骤和代码实现,并通过测试数据展示了它们的性能表现。堆排序利用堆的特性进行排序,快速排序通过递归和多种划分方法实现高效排序,归并排序通过分治法将问题分解后再合并,计数排序则通过统计每个元素的出现次数实现非比较排序。最后,文章还对比了这些排序算法在处理一百万个整形数据时的运行时间,帮助读者了解不同算法的优劣。
77 7
|
2月前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
2月前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
212 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
135 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
95 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码