基于蝙蝠优化算法的电力系统经济调度研究(Matlab代码实现)

简介: 基于蝙蝠优化算法的电力系统经济调度研究(Matlab代码实现)

🍁🥬🕒摘要🕒🥬🍁

蝙蝠使用回声定位技术检测猎物、避开障碍物以及在黑暗的环境中找到栖息地。其可以发出非常响亮的脉冲并听取从周围物体反弹回来的回声,根据回声到双耳的不同时间与强度判断物体所在的方向和位置;还可以根据目标猎物或者障碍物的特征发出不同性质的脉冲。

大多数蝙蝠使用恒定频率信号进行回声定位,信号的大小取决于目标猎物。蝙蝠发出的脉冲持续时间很短,一般在8~10 ms之间,其频率通常在25~150 kHz的范围内。正常飞行的过程中,蝙蝠每秒发射10~20个脉冲;而在寻找猎物的过程中,尤其在靠近猎物飞行时,每秒可以发射约200个脉冲。


蝙蝠算法(Bat Algorithm,BA)是受蝙蝠回声定位捕食行为启发,提出的一种基于迭代优化技术的新型群智能优化算法。该算法自2010年由Yang教授提出以来,因其具有模型简单、收敛速度快、参数少等优点 ,已在工程优化 、模型识别等问题中得到较好的应用,很快得到了国内外学者的广泛关注,成为智能优化算法领域新的研究热点。


✨🔎⚡运行结果⚡🔎✨

💂♨️👨‍🎓Matlab代码👨‍🎓♨️💂

clc; % clear any work or data in the command window
clear all; % clear all varriable values before use
close all; % close all open figures
doc_name = 'ED_result.doc';
plot_Fcost = 'FuelCostCurve.png';
plot_Iterr = 'ItterationsCurve.png';
plot_Ploss = 'PowerLossCurve.png';
bar_Ploss = 'PowerLossChart.png';
bar_Fcost = 'FuelCostBar.png';
hvdc_Losses = 'HVDC_loses.png';
transmission_modes = ["HVAC","HVDC"];
source = ["6thermal","4thermal","2wind"];
% prelocating matrices that change in length
[power_loss,F_cost,iterrations,sw_loss,cond_loss,tl_loss,F_cost_inst] = deal(zeros);
demand = [120 150 180 210 240 270 300 330 360 390 420]; % load demands
load_demand_values = numel(demand); % numel counts the elements of matrix
print = fopen(doc_name,'w+');
% variables available to all functions
global fuel_coefficients B power_demand Pg_limits transmission_type ...
    Cond_loss SW_loss TL_loss convergence_time start_timing DRi URi ...
    n f_cost beta tao time instability inst_const
% fuel_coefficients matrix having 5 columns of fuel cost coefficients
fuel_coefficients = [0.00375 2.00 240  0 0;
    0.01750 1.75 200 0 0;
    0.06250 1.00 220 40 0.008;
    0.00834 3.25 200 30 0.009;
    0.02500 3.00 220 0 0;
    0.02500 3.00 190 0 0];
generator_limits = [50 200;20 80;15 50;10 35;10 30;12 40];
%RAMP RATE CONSTRAINTS
DRi= [85 22 15 16 9 16];
URi= [65 12 12 8 6 8];
beta = 1.75;
tao = 2.85;
time = 10; % instability time in seconds
instability = false(); % set the first calculations to be without instability
n = length(fuel_coefficients(:,1)); %Returns the length of the fuel_coefficients variable
for type = 1:numel(transmission_modes)% looping through each mode
    transmission_type = transmission_modes(type);
    fprintf(print,strcat('ECONOMIC DISPATCH FOR _',transmission_type,...
        ' USING NOVEL BAT OPTIMIZATION ALGORITHM \n'));
    %% Step 1:finding the B matrix
    loss_coef = [0.000218 0.000103 0.000009 -0.000010 0.000002 0.000027
        0.000103 0.000181 0.000004 -0.000015 0.000002 0.000030
        0.000009 0.000004 0.000417 -0.000131 -0.000153 -0.000107
        -0.000010 -0.000015 -0.000131 0.000221 0.000094 0.000050
        0.000002 0.000002 -0.000153 0.000094 0.000243 -0.000000
        0.000027 0.000030 -0.000107 0.000050 -0.000000 0.000358];
    %% Step 2: getting power demand and setting incremental cost(lamda)
    for idx = 1:load_demand_values
        power_demand = demand(idx);
        disp(strcat('Computing dispatch for >',num2str(power_demand),...
            'MW in >',transmission_type,', ',num2str(load_demand_values...
            -idx),' more values to go...'))
        disp('Working please wait ...')
        %% Step3: Deploying Novel Bat Algorithm (NBA)
        if (min(generator_limits(:,1)) <= power_demand)&&(power_demand <= sum(generator_limits(:,2)))
            % setting the parameters in the basic Novel Bat Algorithm (NBA)
            M = 1000;   %number of iterations
            pop = 30;
            gamma = 0.9;
            alpha = 0.99;
            r0Max = 1;
            r0Min = 0;
            AMax = 2;
            AMin = 1;
            freqDMax = 1.5;
            freqDMin = 0;
            % setting the additional parameters in Novel Bat Algorithm (NBA)
            G = 10;
            probMax = 0.9;
            probMin = 0.6;
            thetaMax = 1;
            thetaMin = 0.5;
            wMax = 0.9;
            wMin = 0.5;
            CMax = 0.9;
            CMin = 0.1;
            if strcmp(transmission_type,'HVDC') %assigning a different B for HVDC
                B = 0.45*loss_coef;
            else
                B = loss_coef;
            end


📜📢🌈参考文献🌈📢📜

[1]姜晨. 面向云制造多目标优化资源调度结果的预测方法研究[D].浙江工业大学,2019.DOI:10.27463/d.cnki.gzgyu.2019.000567.

相关文章
|
9天前
|
存储 编解码 算法
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
【多光谱滤波器阵列设计的最优球体填充】使用MSFA设计方法进行各种重建算法时,图像质量可以提高至多2 dB,并在光谱相似性方面实现了显著提升(Matlab代码实现)
|
6天前
|
机器学习/深度学习 人工智能 搜索推荐
从零构建短视频推荐系统:双塔算法架构解析与代码实现
短视频推荐看似“读心”,实则依赖双塔推荐系统:用户塔与物品塔分别将行为与内容编码为向量,通过相似度匹配实现精准推送。本文解析其架构原理、技术实现与工程挑战,揭秘抖音等平台如何用AI抓住你的注意力。
134 6
从零构建短视频推荐系统:双塔算法架构解析与代码实现
|
9天前
|
机器学习/深度学习 传感器 算法
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
【高创新】基于优化的自适应差分导纳算法的改进最大功率点跟踪研究(Matlab代码实现)
97 14
|
11天前
|
算法 计算机视觉
【MPDR & SMI】失配广义夹角随输入信噪比变化趋势、输出信干噪比随输入信噪比变化趋势研究(Matlab代码实现)
【MPDR & SMI】失配广义夹角随输入信噪比变化趋势、输出信干噪比随输入信噪比变化趋势研究(Matlab代码实现)
|
11天前
|
编解码 人工智能 算法
【采用BPSK或GMSK的Turbo码】MSK、GMSK调制二比特差分解调、turbo+BPSK、turbo+GMSK研究(Matlab代码实现)
【采用BPSK或GMSK的Turbo码】MSK、GMSK调制二比特差分解调、turbo+BPSK、turbo+GMSK研究(Matlab代码实现)
|
11天前
|
机器学习/深度学习 编解码 并行计算
【改进引导滤波器】各向异性引导滤波器,利用加权平均来实现最大扩散,同时保持图像中的强边缘,实现强各向异性滤波,同时保持原始引导滤波器的低低计算成本(Matlab代码实现)
【改进引导滤波器】各向异性引导滤波器,利用加权平均来实现最大扩散,同时保持图像中的强边缘,实现强各向异性滤波,同时保持原始引导滤波器的低低计算成本(Matlab代码实现)
|
11天前
|
机器学习/深度学习 传感器 边缘计算
【故障诊断】基于时滞反馈随机共振的增强型旋转电机故障诊断(Matlab代码实现)
【故障诊断】基于时滞反馈随机共振的增强型旋转电机故障诊断(Matlab代码实现)
|
11天前
|
传感器 机器学习/深度学习 算法
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
|
11天前
|
运维 算法
【故障诊断】基于最小熵反卷积、最大相关峰度反卷积和最大二阶环平稳盲反卷积等盲反卷积方法在机械故障诊断中的应用研究(Matlab代码实现)
【故障诊断】基于最小熵反卷积、最大相关峰度反卷积和最大二阶环平稳盲反卷积等盲反卷积方法在机械故障诊断中的应用研究(Matlab代码实现)
|
9天前
|
机器学习/深度学习 算法
【概率Copula分类器】实现d维阿基米德Copula相关的函数、HACs相关的函数研究(Matlab代码实现)
【概率Copula分类器】实现d维阿基米德Copula相关的函数、HACs相关的函数研究(Matlab代码实现)

热门文章

最新文章