基于 BP 神经网络特征提取的指纹识别应用(Matlab代码实现)

简介: 基于 BP 神经网络特征提取的指纹识别应用(Matlab代码实现)

💥1 概述

 每个人(包括指纹在内)皮肤纹路在图案、断点和交叉点上各不相同, 也就是说, 是唯一的, 并且终生不变。依靠这种唯一性和稳定性, 我们就可以把一个人同他的指纹对应起来, 通过比较他的指纹和预先保存的指纹进行比较, 就可以验证他的真实身份。这就是指纹识别技术。


  十年后指纹识别技术即将迎来一个跳跃性发展的黄金时期, 专家们保守估计, 未来 5 年, 我国将有近百亿元的市场等待着企业去开拓。指纹识别技术的巨大市场前景, 将对国际、国内安防产业产生巨大的影响。识别指纹, 实际上是提取指纹的“细节”特征。所谓“细节”,是指指纹的纹路端点或交叉点。通过研究指纹的一个局部区域的放大, 可以清楚地看到, 在图的中心, 有一个竖直走向的纹路端点, 即有一个竖直方向的细节。细节的存在与否、类型、位置和方向就是所需提取的细节特征参数。


📚2 运行结果


部分代码:

function [ K ] = TuXiangYuChuLi( img_file_name )
%UNTITLED6 Summary of this function goes here
%   Detailed explanation goes here
% 空域增强 -------------------------------
% image_file_name = 'test.png';
img=double(rgb2gray(imread(img_file_name)));
% figure('name','原始指纹图像');
% imshow(img,[])
[m n]=size(img);
Fe=1;%控制参数
Fd=128;
xmax=max(max(img));
u=(1+(xmax-img)/Fd).^(-Fe);     %空间域变换到模糊域
%也可以多次迭代
for i=1:m                       %模糊域增强算子
   for j=1:n
      if u(i,j)<0.5
        u(i,j)=2*u(i,j)^2; 
      else
        u(i,j)=1-2*(1-u(i,j))^2;
      end
   end
end
img=xmax-Fd.*(u.^(-1/Fe)-1);    %模糊域变换回空间域
% figure('name','空域滤波后的图像');
img = uint8(img);
% imshow(img);
%---------------------------------------------------------------
%二值化图像-------------------------------------------------------
level=graythresh(img); 
J=im2bw(img,level); 
% figure('name','二值化后的图像');
% imshow(J);
%---------------------------------------------------------------
%图像细化--------------------------------------------------------
I=J;
K=bwmorph(~I,'thin','inf');
% figure('name','图像细化后的图像');
% imshow(~K);
% saveas(fs,'wan');
%---------------------------------------------------------------


🎉3 参考文献

[1]邓秀春,韩孜,黄剑.基于BP神经网络特征提取的指纹识别应用[J].广西轻工业,2008(04):51-52.

🌈4 Matlab代码实现

相关文章
|
4月前
|
机器学习/深度学习 PyTorch TensorFlow
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic,深度学习探索者。深耕TensorFlow与PyTorch,分享框架对比、性能优化与实战经验,助力技术进阶。
|
5月前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
374 2
|
5月前
|
机器学习/深度学习 人工智能 算法
卷积神经网络深度解析:从基础原理到实战应用的完整指南
蒋星熠Jaxonic带你深入卷积神经网络(CNN)核心技术,从生物启发到数学原理,详解ResNet、注意力机制与模型优化,探索视觉智能的演进之路。
530 11
|
4月前
|
机器学习/深度学习 数据采集 存储
概率神经网络的分类预测--基于PNN的变压器故障诊断(Matlab代码实现)
概率神经网络的分类预测--基于PNN的变压器故障诊断(Matlab代码实现)
490 0
|
5月前
|
机器学习/深度学习 并行计算 算法
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
【CPOBP-NSWOA】基于豪冠猪优化BP神经网络模型的多目标鲸鱼寻优算法研究(Matlab代码实现)
132 8
|
5月前
|
机器学习/深度学习 缓存 算法
2025年华为杯A题|通用神经网络处理器下的核内调度问题研究生数学建模|思路、代码、论文|持续更新中....
2025年华为杯A题|通用神经网络处理器下的核内调度问题研究生数学建模|思路、代码、论文|持续更新中....
530 1
|
5月前
|
传感器 机器学习/深度学习 算法
【指纹识别】指纹细节提取(Matlab代码实现)
【指纹识别】指纹细节提取(Matlab代码实现)
415 4
|
5月前
|
编解码 安全 算法
【指纹识别】指纹应用程序(Matlab代码实现)
【指纹识别】指纹应用程序(Matlab代码实现)
143 2
|
SQL 安全 网络安全
网络安全与信息安全:知识分享####
【10月更文挑战第21天】 随着数字化时代的快速发展,网络安全和信息安全已成为个人和企业不可忽视的关键问题。本文将探讨网络安全漏洞、加密技术以及安全意识的重要性,并提供一些实用的建议,帮助读者提高自身的网络安全防护能力。 ####
329 17
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
258 10