采用附加动量法和自适应学习率设计来改进bp神经网络的迭代速度,如果不迭代学习率会提高精度;迭代学习率(自适应)会加快收敛,但精度降低(Matlab代码实现)

简介: 采用附加动量法和自适应学习率设计来改进bp神经网络的迭代速度,如果不迭代学习率会提高精度;迭代学习率(自适应)会加快收敛,但精度降低(Matlab代码实现)

1 概述

采用附加动量法和自适应学习率设计来改进bp神经网络的迭代速度,如果不迭代学习率会提高精度;迭代学习率(自适应)会加快收敛,但精度降低(Matlab代码实现)

2 Matlab代码实现

clear all;
close all;
clc;
er = [];
load mnist_uint8;  %用自己的数据
for idj = 1:10
train_x = double(train_x) / 255;
test_x  = double(test_x)  / 255;
train_y = double(train_y);
test_y  = double(test_y);
mu=mean(train_x);    
sigma=max(std(train_x),eps);
train_x=bsxfun(@minus,train_x,mu);   
train_x=bsxfun(@rdivide,train_x,sigma);   
test_x=bsxfun(@minus,test_x,mu);
test_x=bsxfun(@rdivide,test_x,sigma);
arc = [784 300 10]; 
n=numel(arc);
W = cell(1,n-1); 
for i=2:n
    W{i-1} = (rand(arc(i),arc(i-1)+1)-0.5) * 8 *sqrt(6 / (arc(i)+arc(i-1)));
end
learningRate = 2; 
numepochs = 1;   
batchsize = 200; 
m = size(train_x, 1);
numbatches = m / batchsize;
%% 训练
L = zeros(numepochs*numbatches,1);
ll=1;
for i = 1 : numepochs
    kk = randperm(m);
    for l = 1 : numbatches
        batch_x = train_x(kk((l - 1) * batchsize + 1 : l * batchsize), :);
        batch_y = train_y(kk((l - 1) * batchsize + 1 : l * batchsize), :);
       %% 正向传播
        mm = size(batch_x,1);
        x = [ones(mm,1) batch_x];
        a{1} = x;
        %隐藏层用tanh
        for ii = 2 : n-1
            a{ii} = 1.7159*tanh(2/3.*(a{ii - 1} * W{ii - 1}'));   
            a{ii} = [ones(mm,1) a{ii}];
        end
        %最后一层使用sigmoid
        a{n} = 1./(1+exp(-(a{n - 1} * W{n - 1}')));
        e = batch_y - a{n};
        L(ll) = 1/size(e,2) * sum(sum(e.^2)) / mm; 
       %% 反向传播
        d{n} = -e.*(a{n}.*(1 - a{n}));
        for ii = (n - 1) : -1 : 2
            d_act = 1.7159 * 2/3 * (1 - 1/(1.7159)^2 * a{ii}.^2);
            if ii+1==n    
                d{ii} = (d{ii + 1} * W{ii}) .* d_act; 
            else 
                d{ii} = (d{ii + 1}(:,2:end) * W{ii}).* d_act;
            end          
        end
        for ii = 1 : n-1
            if ii + 1 == n
                     dW{ii} = (d{ii + 1}' * a{ii}) / size(d{ii + 1}, 1);
            else
                     dW{ii} = (d{ii + 1}(:,2:end)' * a{ii}) / size(d{ii + 1}, 1);      
            end
        end
       %% 更新参数
       if ll == 1
           learningRateS = cell(1,n-1);
            for ii = 1 : n - 1       
                 W{ii} = W{ii} - learningRate.*dW{ii};
                 learningRateS{ii} = ones(size(dW{ii})) * learningRate;
            end
            pre_dW = dW;
       else
            for ii = 1 : n - 1       
                 W{ii} = W{ii} +pre_dW{ii} * 0.5 - learningRateS{ii}.*dW{ii} .* 1.1.^sign1(dW{ii}.*pre_dW{ii});
                 learningRateS{ii} = learningRateS{ii}.* 1.1.^sign1(dW{ii}.*pre_dW{ii});
            end
            pre_dW = dW;
       end
        ll=ll+1;
    end
end
%% 测试
mm = size(test_x,1);
x = [ones(mm,1) test_x];
a{1} = x;
for ii = 2 : n-1    
    a{ii} = 1.7159 * tanh( 2/3 .* (a{ii - 1} * W{ii - 1}'));  
    a{ii} = [ones(mm,1) a{ii}];
end
a{n} = 1./(1+exp(-(a{n - 1} * W{n - 1}')));
[~, i] = max(a{end},[],2);
labels = i;                  
[~, expected] = max(test_y,[],2);
bad = find(labels ~= expected); 
er = [er, numel(bad) / size(x, 1)];    
end
mean(er)
std(er,1)
plot(L);
xlabel('更新次数');
ylabel('误差');
function x = sign1(x)
x(x>=0) = 1;
x(x<0) = -1;
end


相关文章
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
6月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
138 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
9月前
|
数据安全/隐私保护
地震波功率谱密度函数、功率谱密度曲线,反应谱转功率谱,matlab代码
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
|
8月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】26.卷积神经网络之AlexNet模型介绍及其Pytorch实现【含完整代码】
|
8月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
【从零开始学习深度学习】28.卷积神经网络之NiN模型介绍及其Pytorch实现【含完整代码】
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
PyTorch代码实现神经网络
这段代码示例展示了如何在PyTorch中构建一个基础的卷积神经网络(CNN)。该网络包括两个卷积层,分别用于提取图像特征,每个卷积层后跟一个池化层以降低空间维度;之后是三个全连接层,用于分类输出。此结构适用于图像识别任务,并可根据具体应用调整参数与层数。
102 9
|
6月前
|
机器学习/深度学习 数据可视化 Python
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
该博客展示了如何通过Python预处理神经网络权重矩阵并将其导出为表格,然后使用Chiplot网站来可视化神经网络的神经元节点之间的连接。
85 0
如何可视化神经网络的神经元节点之间的连接?附有Python预处理代码
|
6月前
|
机器学习/深度学习 Linux TensorFlow
【Tensorflow+keras】用代码给神经网络结构绘图
文章提供了使用TensorFlow和Keras来绘制神经网络结构图的方法,并给出了具体的代码示例。
85 0
|
7月前
|
机器学习/深度学习 编解码 数据可视化
图神经网络版本的Kolmogorov Arnold(KAN)代码实现和效果对比
目前我们看到有很多使用KAN替代MLP的实验,但是目前来说对于图神经网络来说还没有类似的实验,今天我们就来使用KAN创建一个图神经网络Graph Kolmogorov Arnold(GKAN),来测试下KAN是否可以在图神经网络方面有所作为。
238 0

热门文章

最新文章