RabbitMQ 能保证消息可靠性吗

本文涉及的产品
容器服务 Serverless 版 ACK Serverless,317元额度 多规格
容器服务 Serverless 版 ACK Serverless,952元额度 多规格
简介: RabbitMQ 能保证消息可靠性吗

前言

前面我们在做MQ组件选型时,提到了rabbitMQ的消息可靠性,那么它到底可靠到什么程度?又是如何保证消息可靠性的呢?今天我们就一起来看一下


一、消息可靠性的定义

消息可靠性是指在消息传递过程中,确保消息能够被完整、准确、可靠地传递到目的地。更具体的说分为两个角度:


  1. 不会意外丢失
  2. 不会重复传递

因此,我们必须保证消息不会因为网络故障、系统故障或其他异常原因而丢失或重复传递,否则可能导致业务逻辑错误、数据损坏或系统崩溃等问题


二、几种不可靠的场景

  1. 消息漏发送:生产者在发送消息时,如果不观察RabbitMQ服务器的确认消息,可能导致有些消息在网络中丢失而不自知
  2. 消息重复发送:如果生产者在发送消息时,由于网络抖动或者其他原因,生产者无法从RabbitMQ收到消息确认,此时生产者会重发同样一条消息,从而导致消息重复
  3. 消息未储存:rabbitMQ服务器宕机,导致已经在rabbit服务器内的消息直接丢失
  4. 消费者重复消费:如果消费者和MQ都不记得曾经消费过的消息,主动拉取或推送了旧的消息,导致重复消费,

三、防意外丢失

在这里,必须提前声明一点:即消息意外丢失,因为rabbitMQ经由转换机,如果匹配不到任何队列,是会主动丢弃该消息的,这种丢失属于业务配置上的主动丢弃,不记在意外丢失中


1. 消息持久化

消息持久化需要在消息生产者修改代码

   String MESSAGE = "Hello, RabbitMQ!";
   // 设置消息持久化
   AMQP.BasicProperties properties = new AMQP.BasicProperties.Builder()
      .contentType("text/plain")
      .deliveryMode(2) // deliveryMode=1代表不持久化,deliveryMode=2代表持久化
      .build();
   channel.basicPublish("", MESSAGE_QUEUE, properties, MESSAGE.getBytes("UTF-8"));

也可以直接使用内置的properties

   channel.basicPublish("", MESSAGE_QUEUE, MessageProperties.PERSISTENT_TEXT_PLAIN, MESSAGE.getBytes("UTF-8"));

2. 队列持久化

尽管我们上面已经使用了消息持久化,但是这是不够的,消息本身不会作为一个实体存在硬盘上,真正落在硬盘上的是队列,及队列中的消息。所以,要想保存消息,还得把消息所在的队列持久化,因此需要在声明队列时,将其 durable 属性设置为true

    // 设置队列持久化
    boolean durable = true;
    channel.queueDeclare(QUEUE_NAME, durable, false, false, null);

注意,该属性不可修改,如果要把一个队列改成持久化,得先删除,再创建才行


3. 发布确认

我们上面已经成功把消息做了持久化,不过这并不能彻底避免消息丢失,比如在消息发布者发布消息的过程中,在消息成功持久化之前,rabbitMQ就崩溃了,此时消息仍然会丢失。因此,有必要执行发布确认的操作


即消息发送后,MQ要对生产者发送消息确认,确认已经持久化后,再进行发布确认

ba4da1a43cef4a5199c8c962cace145e.png

发布确认默认不开启,如果要开启,需要在channel上设置

    Channel channel = connection.createChannel();
    // 将信道设置为发布确认
    channel.confirmSelect();

进行完该项设置后,还需要针对确认消息的类型,适当的修改发送方代码。一般来说,发布确认有以下类型


3.1 简单发布确认

即发送后,单条单条的消息是否被rabbitMQ服务器接受

  String message = "Hello, RabbitMQ!";
    channel.queueDeclare(QUEUE_NAME, false, false, false, null);
     // 设置简单发布确认
    channel.confirmSelect();
    channel.basicPublish("", QUEUE_NAME, null, message.getBytes());
    if (channel.waitForConfirms()) {
         System.out.println("Message published successfully.");
    } else {
         System.err.println("Failed to publish message.");
    }

可以看到,这种方式其实采用的是发一条消息,确认一次,效率并不高。


3.2 批量发布确认

批量发布和简单发布,在调用方法上并没有区别,只是发送的消息,从发一条就等待确认一次,变成了发一批,才确认一次。

  int MESSAGE_COUNT = 100;
    String message = "Hello, RabbitMQ!";
    channel.queueDeclare(QUEUE_NAME, false, false, false, null);
    // 设置批量发布确认
    channel.confirmSelect();
    for (int i = 0; i < MESSAGE_COUNT; i++) {
        channel.basicPublish("", QUEUE_NAME, null, message.getBytes());
    }
    int outstandingConfirms = MESSAGE_COUNT;
    while (outstandingConfirms > 0) {
        outstandingConfirms -= channel.waitForConfirms();
    }
    System.out.println("All messages published successfully.");

此种方式,虽然仍然会同步阻塞,但从每条确认一次进化到批量确认一次,大大节约了网络耗时。但是可能会出现一些消息发布成功,但是一些消息未成功的情况,不易进行排查和处理。


3.3 异步发布确认

异步确认则采用的另一种方案,通过给channel设置一个确认监听器,来异步的做确认,即将发布消息和确认处理放在不同的线程中处理

   int MESSAGE_COUNT = 100;
   String message = "Hello, RabbitMQ!";
   ConcurrentNavigableMap<Long, String> outstandingConfirms = new ConcurrentSkipListMap<>();
   Set<Long> failConfirmMessages = new HashSet<>();
   // 异步发布确认
   channel.confirmSelect();
   // 需设置两个监听器,前者为肯定确认,后者为否定确认
   channel.addConfirmListener(new ConfirmCallback() {
       @Override
       // deliveryTag 代表 投递消息的序号;multiple为true,则代表确认所有小于或等于当前消息deliveryTag的状态,为false,代表仅确认该条消息
       public void handle(long deliveryTag, boolean multiple) throws IOException {
           if (multiple) {
               ConcurrentNavigableMap<Long, String> confirmed = outstandingConfirms.headMap(deliveryTag, true);
               // 清除所有小于该序号的消息
               confirmed.clear();
           } else {
               // 仅清除本条消息
               outstandingConfirms.remove(deliveryTag);
           }
       }
   }, new ConfirmCallback() {
       @Override
       public void handle(long deliveryTag, boolean multiple) throws IOException {
           System.err.println("Failed to publish message.");
           failConfirmMessages.add(deliveryTag);
       }
   });
   for (int i = 0; i < MESSAGE_COUNT; i++) {
       long nextSeqNo = channel.getNextPublishSeqNo();
       channel.basicPublish("", QUEUE_NAME, null, message.getBytes());
       outstandingConfirms.put(nextSeqNo, message);
   }
   // 一段时间过后
   ......
   // 看最后是否还有消息被确认丢失,此时可选择是否要重新发送
   if (failConfirmMessages .size() == 0 && outstandingConfirms.size() == 0) {
      System.out.println("All messages published successfully.");
   } else {
    System.out.println("Some messages need republish.");
   }

fdaa203824fe43a19cf56f41b447d746.png


通过异步方式做确认,能提升性能,缺点是需要一些多线程的知识,实现难度较高。


4. 手动接收确认

如果第三点,是保证消息发送者到MQ服务器之间,消息不会丢失。那么同理,还需要保证MQ服务器到消费者间,消息不会丢失。


这时候,就需要手动接收确认了,即消费者得到消息后,先进行业务处理(或消息存储),直到业务处理完成后。再告知rabbitMQ服务器,消息我收到了。从而避免了自动ack后,消费者宕机导致的消息未处理完就丢失的问题,其示例代码如下

 // 创建消费者对象
 final Consumer consumer = new DefaultConsumer(channel) {
     @Override
     public void handleDelivery(String consumerTag, Envelope envelope, AMQP.BasicProperties properties, byte[] body) throws IOException {
         String message = new String(body, "UTF-8");
         try {
             // 处理消息
             System.out.println("Received message: " + message);
             // 显式 ack 消息
             channel.basicAck(envelope.getDeliveryTag(), false); // 第二个参数表示是否批量处理
         } catch (Exception ex) {
             // 处理消息时发生异常,拒绝消息并重新将其放回队列中
             channel.basicNack(envelope.getDeliveryTag(), false, true);
         }
     }
 };
 // 开始消费消息,使用手动ack
 boolean autoAck = false;
 channel.basicConsume(QUEUE_NAME, autoAck, consumer);

PS:需要注意的是,手动ack可能带来重复消费的问题,比如消息处理成功后,在执行channel.basicAck时宕机,导致RabbitMQ服务器没收到消息接收确认的信号,超时后会认为该消息未被接收


5. 死信队列

在某些情况下(如手动ACK),如消费者在暂时无法处理该消息,RabbitMQ 可能会将消息重新放回队列,但大量的重新放回会导致消息堆积,也是不可取的。

// 如下,消费者可以向rabbitMQ发送nack的消息,且设置requeue参数为false
 void basicNack(long deliveryTag, boolean multiple, boolean requeue)
            throws IOException;

为了避免这种情况,RabbitMQ 提供了死信队列的功能。当消息因为某些原因不能被消费时,RabbitMQ 将消息放入死信队列而不是重新放回队列,防止消息丢失

6ba57bc0296842b6bc5316e3ffc09da0.png


四、防重复传递

上面一节,我们为rabbitMQ在消息传递过程中,各个节点都有防消息丢失的配置。这一节,我们来说rabbitMQ为了防止一条消息重复传递而做的努力


1. 消息确认机制

上面,我们说了发布确认和接收确认。其实,不管是发布和接收,这都属于消息确认机制的一种,而消息确认机制是AMQP协议所规定的。发布确认是为了防止丢失消息,接收确认则是为了防止重复消费,当消费者成功接收到消息并完成处理后,发送确认通知给 RabbitMQ,RabbitMQ 才会将该消息标记为已消费,防止重复传递


2. 幂等性校验(需代码实现)

在消息生产者发送消息之前,消息可以被设置上全局唯一uuid,而消费者在消费前,则会判断该uuid是否已经消费过。

// 生产者发送消息之前,将消息标记为idempotent
// 通过设置 messageId 属性为一个唯一值,即可标记该消息为幂等消息
String messageId = UUID.randomUUID().toString();
AMQP.BasicProperties properties = new AMQP.BasicProperties.Builder()
        .messageId(messageId)
        .build();
channel.basicPublish(EXCHANGE_NAME, ROUTING_KEY, properties, message.getBytes());
// 消费者在处理消息之前,检查该消息是否已经被消费过
// 如果该消息已经被消费过,则直接确认消息
String messageId = properties.getMessageId();
if (processedIds.contains(messageId)) {
    channel.basicAck(envelope.getDeliveryTag(), false);
    return;
}
// 处理消息,并将 messageId 加入已处理集合
// ...
processedIds.add(messageId);

以上代码仅展示原理,实际上分布式高并发的情况下,uuid应该交由专门的服务器用雪花算法等方式去产生全局唯一的uuid。同样消费者处的processedIds也会进行远端存储


五、不可靠场景的对策

现在,让我们回头来看看不可靠场景下,rabbitMQ和我们开发者能用什么对策解决


  1. 消息漏发送:生产者在发送消息时,如果不观察RabbitMQ服务器的确认消息,可能导致有些消息在网络中丢失而不自知
  2. 消息重复发送:如果生产者在发送消息时,由于网络抖动或者其他原因,生产者无法从RabbitMQ收到消息确认,此时生产者会重发同样一条消息,从而导致消息重复
  3. 消息未储存:rabbitMQ服务器宕机,导致已经在rabbit服务器内的消息直接丢失
  4. 消费者重复消费:如果消费者不记得曾经消费过的消息,主动拉取或被推送了旧的消息,导致重复消费,
场景 场景解释 解决对策
消息漏发送 生产者在发送消息时,如果不观察RabbitMQ服务器的确认消息,可能导致有些消息在网络中丢失而不自知 发布确认
消息重复发送 如果生产者在发送消息时,由于网络抖动或者其他原因,生产者无法从RabbitMQ收到消息确认,此时生产者会重发同样一条消息,从而导致消息重复 无策略
消息未储存 rabbitMQ服务器宕机,导致已经在rabbit服务器内的消息直接丢失 队列、消息持久化
消费者重复消费 如果消费者和MQ都不记得曾经消费过的消息,主动拉取或推送了旧的消息,导致重复消费 接受确认、幂等性校验(代码实现)

六、总结

RabbitMQ 能保证消息可靠性吗?答案是绝大部分情况可靠,但仅靠其自身机制无法做到100%。比如对于没有收到发布确认信息,导致消息生产者重复传递这种场景就并没有好的办法,只能通过开发者额外代码去解决,比如发消息带全局唯一id,然后由消费者去做幂等性校验。而针对更极端的场景,如RabbitMQ硬盘故障导致消息丢失,就得依托镜像部署等手段去处理了


相关实践学习
消息队列RocketMQ版:基础消息收发功能体验
本实验场景介绍消息队列RocketMQ版的基础消息收发功能,涵盖实例创建、Topic、Group资源创建以及消息收发体验等基础功能模块。
消息队列 MNS 入门课程
1、消息队列MNS简介 本节课介绍消息队列的MNS的基础概念 2、消息队列MNS特性 本节课介绍消息队列的MNS的主要特性 3、MNS的最佳实践及场景应用 本节课介绍消息队列的MNS的最佳实践及场景应用案例 4、手把手系列:消息队列MNS实操讲 本节课介绍消息队列的MNS的实际操作演示 5、动手实验:基于MNS,0基础轻松构建 Web Client 本节课带您一起基于MNS,0基础轻松构建 Web Client
目录
相关文章
|
6月前
|
消息中间件 存储 监控
|
6月前
|
消息中间件 安全 Java
【RabbitMQ高级篇】消息可靠性问题
【RabbitMQ高级篇】消息可靠性问题
162 0
|
6月前
|
消息中间件 存储 数据库
RabbitMQ之MQ的可靠性
RabbitMQ之MQ的可靠性
|
6月前
|
消息中间件 存储 运维
|
6月前
|
消息中间件 SQL Java
RabbitMQ之消费者可靠性
RabbitMQ之消费者可靠性
|
3月前
|
消息中间件 存储 运维
RabbitMQ-消息消费时的可靠性保障
将这些实践融入到消息消费的处理逻辑中,可以很大程度上保障RabbitMQ中消息消费的可靠性,确保消息系统的稳定性和数据的一致性。这些措施的实施,需要在系统的设计和开发阶段充分考虑,以及在后续的维护过程中不断的调整和完善。
55 0
|
6月前
|
消息中间件 存储 运维
深入理解MQ消息队列的高可用与可靠性策略
深入理解MQ消息队列的高可用与可靠性策略
1337 3
|
6月前
|
消息中间件 Java API
【微服务系列笔记】MQ消息可靠性
消息可靠性涉及防止丢失,包括生产者发送时丢失、未到达队列以及消费者消费失败处理后丢失。 确保RabbitMQ消息可靠性的方法有:开启生产者确认机制,确保消息到达队列;启用消息持久化以防止未消费时丢失;使用消费者确认机制,如设置为auto,由Spring确认处理成功后ack。此外,可开启消费者失败重试机制,多次失败后将消息投递到异常交换机。
111 1
|
6月前
|
消息中间件 供应链 Java
RabbitMQ入门指南(九):消费者可靠性
RabbitMQ是一个高效、可靠的开源消息队列系统,广泛用于软件开发、数据传输、微服务等领域。本文主要介绍了消费者确认机制、失败重试机制、失败处理策略、业务幂等性等内容。
259 0
RabbitMQ入门指南(九):消费者可靠性
|
6月前
|
消息中间件 Java 微服务
RabbitMQ入门指南(七):生产者可靠性
RabbitMQ是一个高效、可靠的开源消息队列系统,广泛用于软件开发、数据传输、微服务等领域。本文主要介绍了消息丢失的可能性、生产者可靠性中的生产者重试机制和生产者确认机制等内容。
199 0
RabbitMQ入门指南(七):生产者可靠性