【CEEMDAN-VMD-GRU】完备集合经验模态分解-变分模态分解-门控循环单元预测研究(Python代码实现)

简介: 【CEEMDAN-VMD-GRU】完备集合经验模态分解-变分模态分解-门控循环单元预测研究(Python代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥


🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。


⛳️座右铭:行百里者,半于九十。


📋📋📋本文目录如下:🎁🎁🎁


目录


💥1 概述


1.1 完备集合经验模态分解原理


1.2 变分 模 态 分 解


1.3 GRU


📚2 运行结果


🎉3 参考文献


🌈4 Python代码实现


💥1 概述

1.1 完备集合经验模态分解原理

早期的 EMD 方法具有较强的自适应性,能够有效地分解时间序列;但是,算法在运算过程中


容易出现模态混叠现象。EEMD 分解方法的思想是:在原始信号中加入白噪声[16],使极值点分布更均衡;最终分量在EMD 的基础上进行集成平均而得。但是,这种方法具有计算量大且重构时残留噪音大的缺陷。CEEMDAN 是 EEMD 的改进算法。该算法通过添加有限次数的自适应白噪声,解决了集合平均次数限制下的重构误差较大的问题。


1.2 变分 模 态 分 解

变分 模 态 分 解 ( variational mode decomposition,VMD) 算法是由 Dragomiretskiy 等提出的一种自动自适应、非递归的信号处理方法。此算法克服了 EMD 及其改进算法端点效应和模态分量


混叠的问题,可以将非稳定性、非线性且复杂度高的信号分解为多个相对平稳的子序列,在求解过


程中可自适应匹配最佳中心特征,极大程度地迎合高频率复杂信号的分解。


1.3 GRU

循环神经网络(Recurrent neural network,RNN)是经典的神经网络之一。由于 RNN 隐藏层


在不同样本序列的同一个神经元之间存在记忆传递,因此 RNN 在处理时间序列的线性回归问题具有优势:即,可以将前一刻神经元受到的影响输送到下一次学习中。但是,传统的 RNN 在进行反向传播时,如果输入数据的序列比较长,就会出现梯度消失、梯度爆炸等问题。


长短期记忆网络(Long short term memory,LSTM)和 GRU 的优势,在于其通过“门”结构极大地避免梯度消失问题,可以有效地分析长期依赖关系。


LSTM 包含 3 个门结构:遗忘门,输入门、输出门[21]。GRU 在 LSTM 的基础上减少了单元中门的个数,化简了单元复杂度,因此其运行效果要好于 LSTM。GRU 是由更新门和重置门构成,其内部结构如图 1 所示。


05498822086d4ceb90383cd588c75e35.png


📚2 运行结果


bd79d8d96ca6408881319b2c9b47bca0.png


92e526c9c18e4d509da6fe17d5a9cff2.png

ef2807433c2b45e7857277d8d1d0162e.png

be998ff5da024c4090f972c771d2f50d.png

3accdd836c9e46c9bf2525a2b39ac4d0.png


部分代码:

# 7.Predict Co-IMF0 by matrix-input GRU
time0 = time.time()
df_vmd_co_imf0['sum'] = df_integrate_result['co-imf0']
co_imf0_predict_raw, co_imf0_gru_evaluation, co_imf0_train_loss = GRU_predict(df_vmd_co_imf0)
print('======Co-IMF0 Predicting Finished======\n', co_imf0_gru_evaluation)
time1 = time.time()
print('Running time: %.3fs'%(time1-time0))
co_imf0_predict_raw.plot(title='Co-IMF0 Predicting Result')
co_imf0_train_loss.plot(title='Co-IMF0 Training Loss')
# 8.Predict Co-IMF1 and Co-IMF2 by vector-input GRU
co_imf1_predict_raw, co_imf1_gru_evaluation, co_imf1_train_loss = GRU_predict(df_integrate_result['co-imf1'])
print('======Co-IMF1 Predicting Finished======\n', co_imf1_gru_evaluation)
time2 = time.time()
print('Running time: %.3fs'%(time2-time1))
co_imf1_predict_raw.plot(title='Co-IMF1 Predicting Result')
co_imf1_train_loss.plot(title='Co-IMF1 Training Loss')
co_imf2_predict_raw, co_imf2_gru_evaluation, co_imf2_train_loss = GRU_predict(df_integrate_result['co-imf2'])
print('======Co-IMF2 Predicting Finished======\n', co_imf2_gru_evaluation)
time3 = time.time()
print('Running time: %.3fs'%(time3-time2))
co_imf2_predict_raw.plot(title='Co-IMF2 Predicting Result')
co_imf2_train_loss.plot(title='Co-IMF2 Training Loss')


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]金子皓,向玲,李林春,胡爱军.基于完备集合经验模态分解的SE-BiGRU超短期风速预测[J].电力科学与工程,2023,39(01):9-16.


[2]蒋富康,陆金桂,刘明昊,丰宇.基于CEEMDAN和CNN-LSTM的滚动轴承故障诊断[J].电子测量技术,2023,46(05):72-77.DOI:10.19651/j.cnki.emt.2210775.


🌈4 Python代码实现


相关文章
|
1月前
|
开发框架 数据建模 中间件
Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器是那些静悄悄的幕后英雄。它们不张扬,却能默默地为函数或类增添强大的功能。本文将带你了解装饰器的魅力所在,从基础概念到实际应用,我们一步步揭开装饰器的神秘面纱。准备好了吗?让我们开始这段简洁而富有启发性的旅程吧!
46 6
|
19天前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
59 33
|
20天前
|
JavaScript API C#
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
41 10
|
1月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
80 8
|
1月前
|
API Python
【Azure Developer】分享一段Python代码调用Graph API创建用户的示例
分享一段Python代码调用Graph API创建用户的示例
59 11
|
1月前
|
Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器就像是给函数穿上了一件神奇的外套,让它们拥有了超能力。本文将通过浅显易懂的语言和生动的比喻,带你了解装饰器的基本概念、使用方法以及它们如何让你的代码变得更加简洁高效。让我们一起揭开装饰器的神秘面纱,看看它是如何在不改变函数核心逻辑的情况下,为函数增添新功能的吧!
|
1月前
|
程序员 测试技术 数据安全/隐私保护
深入理解Python装饰器:提升代码重用与可读性
本文旨在为中高级Python开发者提供一份关于装饰器的深度解析。通过探讨装饰器的基本原理、类型以及在实际项目中的应用案例,帮助读者更好地理解并运用这一强大的语言特性。不同于常规摘要,本文将以一个实际的软件开发场景引入,逐步揭示装饰器如何优化代码结构,提高开发效率和代码质量。
60 6
|
算法 Python
分享一些最近Python刷题的经验与思考
分享一些最近Python刷题的经验与思考
151 0
|
1月前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
1月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。