基于改进的离散PSO算法的FJSP的研究(Python代码实现)

简介: 基于改进的离散PSO算法的FJSP的研究(Python代码实现)

💥 💥 💞 💞 欢迎来到本博客 ❤️ ❤️ 💥 💥



🏆 博主优势: 🌞 🌞 🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。



⛳ 座右铭:行百里者,半于九十。


📋 📋 📋 本文目录如下: 🎁 🎁 🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Python代码实现


💥1 概述

文献来源:


757eac99f2b6d260d52d365febaac910.png


摘要:柔性作业车间调度问题(Flexible Job-shop Scheduling Problem,FJSP)是经典作业车间调度问题的一个扩展,前者更接近于实际生产。以最小化最大完工时间为目标,提出了一种改进的离散粒子群优化算法。传统粒子群优化算法一般适用于优化连续模型问题,FJSP作为复杂度比较高的组合优化问题,是一种典型的离散模型。提出的算法采用机器负荷平衡机制初始化粒子种群,在粒子的更新过程中引入了3个操作算子来更新粒子的工序排序部分和机器分配部分,这3个算子分别为基于工序排序或机器分配的变异、与个体最优位置之间进行工序先后顺序保留的交叉(POX)操作、与全局最优位置进行随机点保存的交叉(RPX)操作。先后执行以上3个算子以完成粒子的一次更新。这种操作能够使种群较快地收敛于最优解。对标准测试案例进行实验的结果表明,所提算法对解决FJSP具有有效性,并且能够快速地搜索到近似最优解;与其他同类算法相比,所提算法在求解效果和收敛速度上均具有优越性。


关键词:


作业车间调度;离散优化问题;柔性;粒子群优化;


📚2 运行结果

#总共15个Brandimarte文件 for i in range(15): #每个数据用例都测试10次,取最好的一次结果,如果为了效率可以每个数据都测试1次 results = [solve_FJSP(i,j) for j in range(10)] Pg_list = [result[0] for result in results ] fitness_list = [result[1] for result in results ] job_op_num = results[0][2] p_table = results[0][3] best_fitness_index = np.argmax(np.array(fitness_list)) best_fitness = fitness_list[best_fitness_index] best_Pg = Pg_list[best_fitness_index] #画图,写入.txt文档 path= './BestFitness/BrandimarteMk'+str(i+1)+'/' Decode.decode(best_Pg,job_op_num,p_table,'save',path) print(best_Pg,best_fitness) with open(path+'best_schedule.txt', 'w') as f: f.write(str(best_Pg)+'\n'+str(best_fitness))


80ff3cc65c568bb1a8ad1d64ab7ef547.png


部分代码:

# 生成初始种群
# 种群大小,可以根据m和n的值来调整大小,如C*m*n c为一个常系数
# Popsize = 5*p_table.shape[1]*len(job_op_num)
Popsize = 200
encode = Encode(Popsize, p_table, job_op_num)
# 全局选择的染色体
global_chrs = encode.global_selection()
# #局部选择的染色体
local_chrs = encode.local_selection()
# #随机选择的染色体
random_chrs = encode.random_selection()
# 合并三者,得到初始的种群
chrs = np.vstack((global_chrs, local_chrs, random_chrs))
# 以下是关于操作染色体的代码
# 初始的超参数赋值
o_mega = 0.15
c1 = 0.5
c2 = 0.7
pf_max = 0.8
pf_min = 0.2
# 迭代次数,也可以根据m和n的值来调整大小,
# Iter = 5*p_table.shape[1]*len(job_op_num)
Iter = 200
# 得到初始的个体最优位置
P = copy.deepcopy(chrs)
# 得到初始的全局最优位置
# Decode.decode(chr,job_op_num,p_table,'decode'),其中的‘decode’表示不画图,只是计算适应度
fitness_list = [Decode.decode(chr, job_op_num, p_table, 'decode',None) for chr in P]
Pg = P[np.argmin(fitness_list)]
for iter in range(Iter):
# 计算pf
pf = pf_max - (pf_max - pf_min) / Iter * iter
# 更新种群中所有的染色体
copy_chrs = copy.deepcopy(chrs)
chrs = [pso.f_operator(job_op_num, p_table, chr, P[index], Pg, pf, o_mega, c1, c2) for index, chr in
enumerate(copy_chrs)]
# 更新个体最优位置
P = np.array([chr1 if Decode.decode(chr1, job_op_num, p_table, 'decode',None) <= Decode.decode(chr2, job_op_num,
p_table, 'decode',None)
else chr2 for chr1, chr2 in zip(P, chrs)])
# 更新全局最优位置
fitness_list = [Decode.decode(chr, job_op_num, p_table, 'decode',None) for chr in P]
Pg = P[np.argmin(fitness_list)]
# for chr in chrs:
# print(Decode.decode(chr, job_op_num, p_table, 'decode',None))
# print("第" + str(iter + 1) + '次循环的最优fitness:', Decode.decode(Pg, job_op_num, p_table, 'decode',None))
print("第"+str(file_num+1)+'个数据集,第'+str(run_times+1)+'次运行'+'迭代:'+str(iter+1)+'/'+str(Iter))
fitness = Decode.decode(Pg, job_op_num, p_table, 'decode',None)


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]丁舒阳,黎冰,侍洪波.基于改进的离散PSO算法的FJSP的研究[J].计算机科学,2018,45(04):233-239+256.


🌈4 Python代码实现

相关文章
|
11天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
43 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
1月前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
281 55
|
21天前
|
存储 缓存 监控
局域网屏幕监控系统中的Python数据结构与算法实现
局域网屏幕监控系统用于实时捕获和监控局域网内多台设备的屏幕内容。本文介绍了一种基于Python双端队列(Deque)实现的滑动窗口数据缓存机制,以处理连续的屏幕帧数据流。通过固定长度的窗口,高效增删数据,确保低延迟显示和存储。该算法适用于数据压缩、异常检测等场景,保证系统在高负载下稳定运行。 本文转载自:https://www.vipshare.com
116 66
|
2天前
|
存储 监控 算法
员工电脑监控屏幕场景下 Python 哈希表算法的探索
在数字化办公时代,员工电脑监控屏幕是保障信息安全和提升效率的重要手段。本文探讨哈希表算法在该场景中的应用,通过Python代码例程展示如何使用哈希表存储和查询员工操作记录,并结合数据库实现数据持久化,助力企业打造高效、安全的办公环境。哈希表在快速检索员工信息、优化系统性能方面发挥关键作用,为企业管理提供有力支持。
32 20
|
2月前
|
搜索推荐 Python
利用Python内置函数实现的冒泡排序算法
在上述代码中,`bubble_sort` 函数接受一个列表 `arr` 作为输入。通过两层循环,外层循环控制排序的轮数,内层循环用于比较相邻的元素并进行交换。如果前一个元素大于后一个元素,就将它们交换位置。
147 67
|
2月前
|
存储 搜索推荐 Python
用 Python 实现快速排序算法。
快速排序的平均时间复杂度为$O(nlogn)$,空间复杂度为$O(logn)$。它在大多数情况下表现良好,但在某些特殊情况下可能会退化为最坏情况,时间复杂度为$O(n^2)$。你可以根据实际需求对代码进行调整和修改,或者尝试使用其他优化策略来提高快速排序的性能
139 61
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
187 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
11天前
|
存储 算法 Serverless
剖析文件共享工具背后的Python哈希表算法奥秘
在数字化时代,文件共享工具不可或缺。哈希表算法通过将文件名或哈希值映射到存储位置,实现快速检索与高效管理。Python中的哈希表可用于创建简易文件索引,支持快速插入和查找文件路径。哈希表不仅提升了文件定位速度,还优化了存储管理和多节点数据一致性,确保文件共享工具高效运行,满足多用户并发需求,推动文件共享领域向更高效、便捷的方向发展。
|
25天前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
56 20
|
20天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。

热门文章

最新文章