【无人机】基于灰狼优化算法的无人机路径规划问题研究(Matlab代码实现)

简介: 【无人机】基于灰狼优化算法的无人机路径规划问题研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥


🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。


⛳️座右铭:行百里者,半于九十。


📋📋📋本文目录如下:🎁🎁🎁


目录


💥1 概述


📚2 运行结果


🎉3 参考文献


🌈4 Matlab代码实现


💥1 概述

 随着各种新兴技术的发展,无人机在灾后救援、物资运输、环境监测、军事作战等多个领域起着广泛的应用[1]。航迹规划是无人机执行任务中最重要的部分之一,是指在一定的约束条件下,找到一条能从起点抵达终点且安全、快速、消耗代价小的路线[2]。因此,航迹规划问题经常被当作优化问题来处理,但传统的优化方法无法得到较为精确的解。近年来,受到自然界现象的启发,国内外学者提出了许多生物智能算法如人工蜂群算法、蚁 群 算 法 、天牛须搜索算法 等。它们具有原理简 单、易收敛到最优解、参数设置简单等优点,因此在优化问题中有着广泛的应用。


灰 狼 优 化 算 法是一种群体智能搜索算法,借鉴了灰狼群体中的社会等级制度和捕食行为模式,具有较强的收敛性能和探索能力[4]。但是随着维度和复杂性的增加,GWO 算法 会出


现收敛速度慢、易陷入局部最优、寻优效果较差等问题,于是一些改进的算法被相继提出,一定程度上解决了上述问题。


 在无人机航迹规划问题中,建立无人机的规划空间环境和航迹评价指标是进行航迹规划的前提准备。


 不同的环境信息能够直接影响航迹规划的结果,也会影响执行任务的效果,因此对规划空间环境进行精准建模是十分重要的。考虑到数据存储和计算量的问题,本文采用栅格法来建立规划空间环境模型。


📚2 运行结果


02bdc36c19ee4ba49aa961fc8bc740af.png


部分代码:

% Calculating theta base on start and target points
theta = atand((target(2) - start(2))/(target(1) - start(1)));
% Parameter to control size of bounds
delta_d = 0;
% Number of wolfs
N = 50;
% Number of point generation for each wolf
d = 10;
% Constant for Cost_Function
mhio = 0.4;
% Optimization itteration
t_max = 100;
%% Initialization
% Transofrm point and threats to the new coordination
start_transform = Coordinate_Transfromation(start, start, theta);
target_transform = Coordinate_Transfromation(target, start, theta);
threats_tranform = threats;
for i = 1:size(threats, 1)
    threats_tranform(i, 1:3) = Coordinate_Transfromation(threats(i, 1:3), start, theta);
end
% Calculating bounds for initialization and producing N random intial points
[P_min, P_max] = UL_Bounds(threats_tranform, delta_d);
wolfs_positions = Initialization(N, d, target_transform, start_transform, P_min, P_max);
% calculating fittness of each wolf
fitness = Inf;
for i=1:N
    % wolfs_positions(:, :, i) is a set of d points' coordinates for the ith wolf
    fitness_wolf = Cost_Function(wolfs_positions(:, :, i),  threats_tranform, mhio, d);
    if fitness_wolf < fitness
        fitness = fitness_wolf;
        X_alpha = wolfs_positions(:, :, i);
        X_alpha_index = i;
    end
end
% Generating matrix for Xi(t). 
X_t = zeros(d, 3, N, t_max);
for i = 1:N
    for t = 1:t_max
        if t==1
            % We have Xi(1) for different all i. So we fill the X_t(:,:,i,1)
            % with the known positions.
            X_t(:,:,i,1) = wolfs_positions(:, :, i);
        else
            % Also since all the time for all wolfs, the x coordinate
            % should be the same, we fill it so !
            X_t(:,1,i,t) = wolfs_positions(:, 1, i);
            % Also the last row (d) for all X_t should be the target
            X_t(d,:,i,t) = target_transform;
        end
    end
end 


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]许乐,赵文龙.基于新型灰狼优化算法的无人机航迹规划[J].电子测量技术,2022,45(05):55-61.DOI:10.19651/j.cnki.emt.2108509.


[2]芦方旭,米志超,李艾静,王海,田雨露.基于灰狼算法的无人机基站三维空间优化部署[J].兵器装备工程学报,2021,42(07):185-189.


🌈4 Matlab代码实现


相关文章
|
1月前
|
机器学习/深度学习 算法 机器人
基于QLearning强化学习的较大规模栅格地图机器人路径规划matlab仿真
本项目基于MATLAB 2022a,通过强化学习算法实现机器人在栅格地图中的路径规划。仿真结果显示了机器人从初始位置到目标位置的行驶动作序列(如“下下下下右右...”),并生成了详细的路径图。智能体通过Q-Learning算法与环境交互,根据奖励信号优化行为策略,最终学会最优路径。核心程序实现了效用值排序、状态转换及动作选择,并输出机器人行驶的动作序列和路径可视化图。
181 85
|
23天前
|
算法 数据安全/隐私保护 计算机视觉
基于Retinex算法的图像去雾matlab仿真
本项目展示了基于Retinex算法的图像去雾技术。完整程序运行效果无水印,使用Matlab2022a开发。核心代码包含详细中文注释和操作步骤视频。Retinex理论由Edwin Land提出,旨在分离图像的光照和反射分量,增强图像对比度、颜色和细节,尤其在雾天条件下表现优异,有效解决图像去雾问题。
|
23天前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
126 68
|
1月前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
1月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
17天前
|
机器学习/深度学习 人工智能 算法
Transformer打破三十年数学猜想!Meta研究者用AI给出反例,算法杀手攻克数学难题
《PatternBoost: Constructions in Mathematics with a Little Help from AI》提出了一种结合传统搜索算法和Transformer神经网络的PatternBoost算法,通过局部搜索和全局优化交替进行,成功应用于组合数学问题。该算法在图论中的Ramsey数研究中找到了更小的反例,推翻了一个30年的猜想,展示了AI在数学研究中的巨大潜力,但也面临可解释性和通用性的挑战。论文地址:https://arxiv.org/abs/2411.00566
59 13
|
1月前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。
|
1月前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
1月前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
1月前
|
算法 5G
基于MSWA相继加权平均的交通流量分配算法matlab仿真
本项目基于MSWA(Modified Successive Weighted Averaging)相继加权平均算法,对包含6个节点、11个路段和9个OD对的交通网络进行流量分配仿真。通过MATLAB2022A实现,核心代码展示了迭代过程及路径收敛曲线。MSWA算法在经典的SUE模型基础上改进,引入动态权重策略,提高分配结果的稳定性和收敛效率。该项目旨在预测和分析城市路网中的交通流量分布,达到用户均衡状态,确保没有出行者能通过改变路径减少个人旅行成本。仿真结果显示了27条无折返有效路径的流量分配情况。