【无人机】基于灰狼优化算法的无人机路径规划问题研究(Matlab代码实现)

简介: 【无人机】基于灰狼优化算法的无人机路径规划问题研究(Matlab代码实现)

💥💥💞💞欢迎来到本博客❤️❤️💥💥


🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。


⛳️座右铭:行百里者,半于九十。


📋📋📋本文目录如下:🎁🎁🎁


目录


💥1 概述


📚2 运行结果


🎉3 参考文献


🌈4 Matlab代码实现


💥1 概述

 随着各种新兴技术的发展,无人机在灾后救援、物资运输、环境监测、军事作战等多个领域起着广泛的应用[1]。航迹规划是无人机执行任务中最重要的部分之一,是指在一定的约束条件下,找到一条能从起点抵达终点且安全、快速、消耗代价小的路线[2]。因此,航迹规划问题经常被当作优化问题来处理,但传统的优化方法无法得到较为精确的解。近年来,受到自然界现象的启发,国内外学者提出了许多生物智能算法如人工蜂群算法、蚁 群 算 法 、天牛须搜索算法 等。它们具有原理简 单、易收敛到最优解、参数设置简单等优点,因此在优化问题中有着广泛的应用。


灰 狼 优 化 算 法是一种群体智能搜索算法,借鉴了灰狼群体中的社会等级制度和捕食行为模式,具有较强的收敛性能和探索能力[4]。但是随着维度和复杂性的增加,GWO 算法 会出


现收敛速度慢、易陷入局部最优、寻优效果较差等问题,于是一些改进的算法被相继提出,一定程度上解决了上述问题。


 在无人机航迹规划问题中,建立无人机的规划空间环境和航迹评价指标是进行航迹规划的前提准备。


 不同的环境信息能够直接影响航迹规划的结果,也会影响执行任务的效果,因此对规划空间环境进行精准建模是十分重要的。考虑到数据存储和计算量的问题,本文采用栅格法来建立规划空间环境模型。


📚2 运行结果


02bdc36c19ee4ba49aa961fc8bc740af.png


部分代码:

% Calculating theta base on start and target points
theta = atand((target(2) - start(2))/(target(1) - start(1)));
% Parameter to control size of bounds
delta_d = 0;
% Number of wolfs
N = 50;
% Number of point generation for each wolf
d = 10;
% Constant for Cost_Function
mhio = 0.4;
% Optimization itteration
t_max = 100;
%% Initialization
% Transofrm point and threats to the new coordination
start_transform = Coordinate_Transfromation(start, start, theta);
target_transform = Coordinate_Transfromation(target, start, theta);
threats_tranform = threats;
for i = 1:size(threats, 1)
    threats_tranform(i, 1:3) = Coordinate_Transfromation(threats(i, 1:3), start, theta);
end
% Calculating bounds for initialization and producing N random intial points
[P_min, P_max] = UL_Bounds(threats_tranform, delta_d);
wolfs_positions = Initialization(N, d, target_transform, start_transform, P_min, P_max);
% calculating fittness of each wolf
fitness = Inf;
for i=1:N
    % wolfs_positions(:, :, i) is a set of d points' coordinates for the ith wolf
    fitness_wolf = Cost_Function(wolfs_positions(:, :, i),  threats_tranform, mhio, d);
    if fitness_wolf < fitness
        fitness = fitness_wolf;
        X_alpha = wolfs_positions(:, :, i);
        X_alpha_index = i;
    end
end
% Generating matrix for Xi(t). 
X_t = zeros(d, 3, N, t_max);
for i = 1:N
    for t = 1:t_max
        if t==1
            % We have Xi(1) for different all i. So we fill the X_t(:,:,i,1)
            % with the known positions.
            X_t(:,:,i,1) = wolfs_positions(:, :, i);
        else
            % Also since all the time for all wolfs, the x coordinate
            % should be the same, we fill it so !
            X_t(:,1,i,t) = wolfs_positions(:, 1, i);
            % Also the last row (d) for all X_t should be the target
            X_t(d,:,i,t) = target_transform;
        end
    end
end 


🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。


[1]许乐,赵文龙.基于新型灰狼优化算法的无人机航迹规划[J].电子测量技术,2022,45(05):55-61.DOI:10.19651/j.cnki.emt.2108509.


[2]芦方旭,米志超,李艾静,王海,田雨露.基于灰狼算法的无人机基站三维空间优化部署[J].兵器装备工程学报,2021,42(07):185-189.


🌈4 Matlab代码实现


相关文章
|
19天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
5天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
13天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
13天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如&quot;How are you&quot;、&quot;I am fine&quot;、&quot;I love you&quot;等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
18天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
16天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
20天前
|
算法 决策智能
基于遗传优化算法的TSP问题求解matlab仿真
本项目使用遗传算法解决旅行商问题(TSP),目标是在四个城市间找到最短路径。算法通过编码、选择、交叉、变异等步骤,在MATLAB2022A上实现路径优化,最终输出最优路径及距离。
|
4月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
224 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
4月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
141 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
4月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
110 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码