m基于FPGA的图像Harris角点特征提取和图像配准verilog实现,包含testbench和MATLAB辅助验证

简介: m基于FPGA的图像Harris角点特征提取和图像配准verilog实现,包含testbench和MATLAB辅助验证

1.算法仿真效果
Quartusii18.0+ModelSim-Altera 6.6d Starter Edition的测试结果如下:

7fddfe4900bc75c71100a16b96f8a33e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
c8c866d5583a669e45d025c0b6b19a85_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
dd315d60bf7046c9c891ca699831eb98_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

MATLAB2022a测试结果如下:

2b73137bb7473db16cf58cbf85fb20f3_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png
1feabf8574808217a772b189f72f4407_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
在计算机视觉领域中,图像特征提取和图像配准是两个基本的问题。图像特征提取是指从图像中提取出具有代表性的特征点或特征描述子,以便于后续的图像处理,例如目标检测、目标跟踪、三维重建等。而图像配准则是指将两幅或多幅图像在空间上对齐,以便于进行后续的图像融合、图像拼接等操作。在这两个问题中,角点检测和描述子提取是其中的一个重要问题。

    在图像中,角点通常指的是图像中边缘交汇的位置。角点是图像中最具有代表性的点之一,因为不同于直线和曲线,角点具有旋转不变性和尺度不变性,同时也具有较强的区分度。因此,角点在图像特征提取、目标检测等领域中得到了广泛应用。

   在计算机视觉领域中,有很多种角点检测算法,其中比较经典的算法是Harris角点检测算法。Harris角点检测算法是由Chris Harris和Mike Stephens在1988年提出的,它通过计算图像中的像素点在不同方向上的灰度变化率来判断哪些点是角点。下面将详细介绍Harris角点检测算法的原理和实现。

   图像配准是指将两幅或多幅图像在空间上对齐,以便于进行后续的图像融合、图像拼接等操作。在计算机视觉领域中,图像配准是一个非常重要的问题,它广泛应用于医学影像、遥感图像、工业检测等领域。图像配准的目标是找到两幅图像之间的对应点,从而将它们在空间上对齐。在寻找对应点的过程中,特征点的匹配是一个关键问题。

1 特征点匹配

  在图像配准中,特征点匹配是一个重要的问题。特征点匹配是指将两幅图像中的特征点进行匹配,从而找到它们之间的对应关系。特征点匹配通常分为两个步骤:特征提取和特征匹配。特征提取是指从图像中提取出具有代表性的特征点或特征描述子。在前面介绍的Harris角点检测算法中,角点可以作为图像的特征点。此外,还有很多其他的特征点检测算法,例如SIFT、SURF、ORB等。这些算法都能够从图像中提取出具有代表性的特征点或特征描述子,用于后续的特征匹配。特征匹配是将两幅图像中的特征点进行匹配,从而找到它们之间的对应关系。特征匹配通常使用距离度量的方法进行,例如欧式距离、汉明距离等。在特征匹配中,需要确定一个阈值来判断两个特征点之间的匹配关系。如果两个特征点之间的距离小于阈值,那么它们就被认为是匹配的。

2 图像配准算法

   图像配准算法主要分为基于特征的方法和基于区域的方法。基于特征的方法是一种广泛使用的图像配准方法,它利用图像中的特征点或特征描述子进行图像配准。基于特征的方法通常包括以下步骤:

提取两幅图像的特征点或特征描述子。
对两幅图像中的特征点或特征描述子进行匹配,找到它们之间的对应关系。
根据找到的对应关系,计算图像的变换矩阵。
对其中一幅图像进行变换,使得两幅图像在空间上对齐。
其中,步骤3和步骤4通常使用最小二乘法进行求解。最小二乘法是一种广泛使用的数学方法,用于求解线性方程组的最优解。在图像配准中,最小二乘法可以用于计算图像的变换矩阵,从而实现图像配准。

  基于harrirs配准的模块主要包括角点提取功能、角点配准功能两大模块。其中,角点提取模块包括高斯滤波,Harris响应值计算以及非最大值抑制等功能。角点配准模块包括角点坐标值计算功能以及配准功能。因此,这个系统的结构如下图所示:

5907276ec1484421f3f1efcfa09384ab_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

3.Verilog核心程序
```SDRAM_out SDRAM_out_u(
.i_clk (i_clk),
.i_rst (i_rst),
.o_images1(o_images1),
.o_images2(o_images2)
);

//select
wire[7:0]Images;
assign Images = o_images1;

//x方向滤波
fx_filter fx_filter_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_image (Images),
.o_image (o_fx)
);

//y方向滤波
fy_filter fy_filter_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_image (Images),
.o_image (o_fy)
);

//Ix2= Ix.^2;
//Iy2= Iy.^2;
//Ixy= Ix.*Iy;

Ix2Iy2 Ix2Iy2_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_Ix (o_fx),
.i_Iy (o_fy),
.o_Ix2 (o_Ix2),
.o_Iy2 (o_Iy2),
.o_IxIy (o_Ixy)
);

Rdet Rdet_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_Ix2 (o_Ix2),
.i_Iy2 (o_Iy2),
.i_Ixy (o_Ixy),
.o_det (o_det),
.o_trace (o_trace),
.o_R (o_R)
);

Rcheck Rcheck_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_R (o_R),
.o_Result1(o_Result1),
.o_Result2(o_Result2)
);

endmodule
```

相关文章
|
29天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于MSER和HOG特征提取的SVM交通标志检测和识别算法matlab仿真
### 算法简介 1. **算法运行效果图预览**:展示算法效果,完整程序运行后无水印。 2. **算法运行软件版本**:Matlab 2017b。 3. **部分核心程序**:完整版代码包含中文注释及操作步骤视频。 4. **算法理论概述**: - **MSER**:用于检测显著区域,提取图像中稳定区域,适用于光照变化下的交通标志检测。 - **HOG特征提取**:通过计算图像小区域的梯度直方图捕捉局部纹理信息,用于物体检测。 - **SVM**:寻找最大化间隔的超平面以分类样本。 整个算法流程图见下图。
|
1月前
|
算法 数据安全/隐私保护
织物图像的配准和拼接算法的MATLAB仿真,对比SIFT,SURF以及KAZE
本项目展示了织物瑕疵检测中的图像拼接技术,使用SIFT、SURF和KAZE三种算法。通过MATLAB2022a实现图像匹配、配准和拼接,最终检测并分类织物瑕疵。SIFT算法在不同尺度和旋转下保持不变性;SURF算法提高速度并保持鲁棒性;KAZE算法使用非线性扩散滤波器构建尺度空间,提供更先进的特征描述。展示视频无水印,代码含注释及操作步骤。
|
2月前
|
算法 数据可视化 数据安全/隐私保护
基于LK光流提取算法的图像序列晃动程度计算matlab仿真
该算法基于Lucas-Kanade光流方法,用于计算图像序列的晃动程度。通过计算相邻帧间的光流场并定义晃动程度指标(如RMS),可量化图像晃动。此版本适用于Matlab 2022a,提供详细中文注释与操作视频。完整代码无水印。
|
4月前
|
算法
基于粒子群优化的图像融合算法matlab仿真
这是一个基于粒子群优化(PSO)的图像融合算法,旨在将彩色模糊图像与清晰灰度图像融合成彩色清晰图像。在MATLAB2022a中测试,算法通过PSO求解最优融合权值参数,经过多次迭代更新粒子速度和位置,以优化融合效果。核心代码展示了PSO的迭代过程及融合策略。最终,使用加权平均法融合图像,其中权重由PSO计算得出。该算法体现了PSO在图像融合领域的高效性和融合质量。
|
5月前
|
算法 计算机视觉 异构计算
基于FPGA的图像一维FFT变换IFFT逆变换verilog实现,包含tb测试文件和MATLAB辅助验证
```markdown ## FPGA 仿真与 MATLAB 显示 - 图像处理的 FFT/IFFT FPGA 实现在 Vivado 2019.2 中仿真,结果通过 MATLAB 2022a 展示 - 核心代码片段:`Ddddddddddddddd` - 理论:FPGA 实现的一维 FFT/IFFT,加速数字信号处理,适用于高计算需求的图像应用,如压缩、滤波和识别 ```
|
6月前
|
机器学习/深度学习 算法 异构计算
m基于FPGA的多通道FIR滤波器verilog实现,包含testbench测试文件
本文介绍了使用VIVADO 2019.2仿真的多通道FIR滤波器设计。展示了系统RTL结构图,并简述了FIR滤波器的基本理论,包括单通道和多通道的概念、常见结构及设计方法,如窗函数法、频率采样法、优化算法和机器学习方法。此外,还提供了Verilog核心程序代码,用于实现4通道滤波器模块,包含时钟、复位信号及输入输出接口的定义。
157 7
|
6月前
|
算法 异构计算
m基于FPGA的电子钟verilog实现,可设置闹钟,包含testbench测试文件
该文介绍了基于FPGA的电子钟设计,利用Vivado2019.2平台进行开发并展示测试结果。电子钟设计采用Verilog硬件描述语言,核心包括振荡器、分频器和计数器。时间显示为2个十进制格式,闹钟功能通过存储器和比较器实现,当当前时间等于设定时间时触发。文中给出了Verilog核心程序示例,展示了时钟信号、设置信号及输出的交互。
189 2
|
6月前
|
编解码 算法 异构计算
基于FPGA的NC图像质量评估verilog实现,包含testbench和MATLAB辅助验证程序
在Vivado 2019.2和Matlab 2022a中测试的图像质量评估算法展示了效果。该算法基于NC指标,衡量图像与原始图像的相似度,关注分辨率、色彩深度和失真。提供的Verilog代码段用于读取并比较两个BMP文件,计算NC值。
|
6月前
|
算法 异构计算
m基于FPGA的MPPT最大功率跟踪算法verilog实现,包含testbench
该内容包括三部分:1) 展示了Vivado 2019.2和Matlab中关于某种算法的仿真结果图像,可能与太阳能光伏系统的最大功率点跟踪(MPPT)相关。2) 简述了MPPT中的爬山法原理,通过调整光伏电池工作点以找到最大功率输出。3) 提供了一个Verilog程序模块`MPPT_test_tops`,用于测试MPPT算法,其中包含`UI_test`和`MPPT_module_U`两个子模块,处理光伏电流和电压信号。
67 1
|
4月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的MSK调制解调系统verilog开发,包含testbench,同步模块,高斯信道模拟模块,误码率统计模块
升级版FPGA MSK调制解调系统集成AWGN信道模型,支持在Vivado 2019.2中设置不同SNR仿真误码率。示例SNR值从0到15,结果展示解调质量随SNR提升。MATLAB仿真验证了MSK性能,图片显示了仿真结果。 ### 理论概要 研究聚焦于软件无线电中的MSK调制解调,利用Verilog实现。MSK是一种相位连续、恒包络的二进制调制技术,优点包括频谱效率高。系统采用无核设计,关键模块包括调制器、解调器和误码检测。复位、输入数据、中频信号等关键信号通过Verilog描述,并通过Chipscope在线观察。
98 6
基于FPGA的MSK调制解调系统verilog开发,包含testbench,同步模块,高斯信道模拟模块,误码率统计模块

热门文章

最新文章