【MATLAB第14期】#源码分享| 基于多层前馈神经网络的回归预测模型代码分享,多参数多图调整

简介: 【MATLAB第14期】#源码分享| 基于多层前馈神经网络的回归预测模型代码分享,多参数多图调整

【MATLAB第14期】#源码分享| 基于多层前馈神经网络的回归预测模型代码分享,多参数多图调整



一、前馈网络和BP网络的区别


1.前馈神经网络


一种单向多层的网络结构,信息从输入层开始,逐层向一个方向传递,一直到输出层结束。前馈是指输出入方向是前向,此过程不调整权值。神经元之间不存在跨层连接、同层连接,输入层用于数据的输入,隐含层与输出层神经元对数据进行加工。


2.反向传播算法


(英语:Backpropagation,缩写为BP)是“误差反向传播”的简称,是一种与最优化方法(如梯度下降法)结合使用的,用来训练人工神经网络的常见方法。该方法对网络中所有权重计算损失函数的梯度。这个梯度会反馈给最优化方法,用来更新权值以最小化损失函数。


3.BP神经网络:


也是前馈神经网络,只是它的参数权重值是由反向传播学习算法调整的。


4.总结:


前馈描述的是网络的结构,指的是网络的信息流是单向的,不会构成环路。它是和“递归网络”(RNN)相对的概念;BP算法是一类训练方法,可以应用于FFNN,也可以应用于RNN,而且BP也并不是唯一的训练方法,其他可用的还有比如遗传算法(GA)等。所以BP神经网络属


二、源码分享

close all;
clear all;
clc
load data.mat; % 载入数据
net = feedforwardnet([10,10]); % 创建网络,n为隐藏层神经元个数
net.divideFcn = 'dividerand'; % 随机分配
net.divideMode = 'sample'; %分割每个样本
net.divideParam.trainRatio = 70/100; % 训练集分配比例
net.divideParam.valRatio = 30/100; % 预测集分配比例
net.divideParam.testRatio = 0/100;  % 测试集分配比例
net.trainFcn = 'trainlm';  % LM
net.performFcn = 'mse';  % MSE
net.plotFcns = {'plotperform','plottrainstate','ploterrhist', 'plotregression'};  % 画图
net.trainParam.show = 5;
net.trainParam.epochs = 10000;
net.trainParam.goal = 1e-7; % 训练目标
net.trainParam.max_fail = 25;  % 最大失败次数 25
inputs = inputs';
targets = targets';
% 训练网络
[net,tr] = train(net,inputs,targets)
% 测试网络
outputs = net(inputs);
errors = gsubtract(targets,outputs);
performance = perform(net,targets,outputs)
% 获得训练、验证和测试的结果
trainTargets = targets .* tr.trainMask{1};
valTargets = targets .* tr.valMask{1};
testTargets = targets .* tr.testMask{1};
trainPerformance = perform(net,trainTargets,outputs)
valPerformance = perform(net,valTargets,outputs)
testPerformance = perform(net,testTargets,outputs)
% 根据画图的结果,决定是否满意
figure, plotperform(tr)
figure, plottrainstate(tr)
figure, plotconfusion(targets,outputs)
figure, ploterrhist(errors)


三、数据获取


后台私聊,回复“14”即可免费获取下载链接。

相关文章
|
1月前
|
存储 算法 数据可视化
基于 MATLAB的GUI信号处理界面设计 源码+运行截图
基于 MATLAB的GUI信号处理界面设计 源码+运行截图
55 2
|
3月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
199 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
3月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
128 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
3月前
|
存储 算法 Serverless
【matlab】matlab基于DTW和HMM方法数字语音识别系统(源码+音频文件+GUI界面)【独一无二】
【matlab】matlab基于DTW和HMM方法数字语音识别系统(源码+音频文件+GUI界面)【独一无二】
|
3月前
|
存储 Serverless
【matlab】matlab实现倒谱法基音频率检测和共振峰检测(源码+音频文件)【独一无二】
【matlab】matlab实现倒谱法基音频率检测和共振峰检测(源码+音频文件)【独一无二】
|
3月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
90 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
3月前
|
机器学习/深度学习 监控 数据可视化
|
4月前
|
机器学习/深度学习 算法 调度
Matlab|基于改进鲸鱼优化算法的微网系统能量优化管理matlab-源码
基于改进鲸鱼优化算法的微网系统能量管理源码实现,结合LSTM预测可再生能源和负荷,优化微网运行成本与固定成本。方法应用于冷热电联供微网,结果显示经济成本平均降低4.03%,提高经济效益。代码包括数据分段、LSTM网络定义及训练,最终展示了一系列运行结果图表。
|
5月前
|
机器学习/深度学习 自然语言处理 PyTorch
【chatgpt问答记录】前馈神经网络
【chatgpt问答记录】前馈神经网络
49 1
|
6月前
|
机器学习/深度学习 算法
【MATLAB】基于VMD-SSA-LSTM的回归预测模型
【MATLAB】基于VMD-SSA-LSTM的回归预测模型
213 4

热门文章

最新文章