【MATLAB第8期】#源码分享//基于MATLAB的最简易且不用安装的支持向量机LIBSVM函数及SVM分类回归模型参数设置

简介: 【MATLAB第8期】#源码分享//基于MATLAB的最简易且不用安装的支持向量机LIBSVM函数及SVM分类回归模型参数设置

运行需求文件


libsvm函数(matlab2020a版本亲测可使用)


注意:运行libsvm需要两个编译文件,可在下面链接获取:

1.svmtrain.mexw64

2.svmpredict.mexw64

私聊回复 “libsvm资源获取”,即可取得资源获取方式。

如果对你有帮助,请点击一波儿关注,双手合十感谢~


LIBSVM参数设置


Options:可用的选项即表示的涵义如下

 -s svm类型:SVM设置类型(默认0)

 0 – C-SVC

 1 --v-SVC

 2 – 一类SVM

 3 – e -SVR

 4 – v-SVR

 -t 核函数类型:核函数设置类型(默认2)

 0 – 线性:u’v

 1 – 多项式:(ru’v + coef0)^degree

 2 – RBF函数:exp(-r|u-v|^2)

 3 –sigmoid:tanh(ru’v + coef0)

 -d degree:核函数中的degree设置(针对多项式核函数)(默认3)

 -g r(gama):核函数中的gamma函数设置(针对多项式/rbf/sigmoid核函数)(默认1/ k)

 -r coef0:核函数中的coef0设置(针对多项式/sigmoid核函数)((默认0)

 -c cost:设置C-SVC,e -SVR和v-SVR的参数(损失函数)(默认1)

 -n nu:设置v-SVC,一类SVM和v- SVR的参数(默认0.5)

 -p p:设置e -SVR 中损失函数p的值(默认0.1)

 -m cachesize:设置cache内存大小,以MB为单位(默认40)

 -e eps:设置允许的终止判据(默认0.001)

 -h shrinking:是否使用启发式,0或1(默认1)

 -wi weight:设置第几类的参数C为weight*C(C-SVC中的C)(默认1)

 -v n: n-fold交互检验模式,n为fold的个数,必须大于等于2

 其中-g选项中的k是指输入数据中的属性数。option -v 随机地将数据剖分为n部分并计算交互检验准确度和均方根误差。以上这些参数设置可以按照SVM的类型和核函数所支持的参数进行任意组合,如果设置的参数在函数或SVM类型中没有也不会产生影响,程序不会接受该参数;如果应有的参数设置不正确,参数将采用默认值。


建立回归/分类模型

%% 数据设置
p_train p_test 为M*N ,M为样本个数,N为特征变量
t_train t_test 为M*p ,M为样本个数,p为因变量,默认为1
%%  创建分类模型
c = 10.0;      % 惩罚因子
g = 0.01;      % 径向基函数参数
cmd = ['-t 2', '-c', num2str(c), '-g', num2str(g)];
model = svmtrain(t_train, p_train, cmd);
%%  创建回归模型
c = 4.0;    % 惩罚因子
g = 0.8;    % 径向基函数参数
cmd = [' -t 2',' -c ',num2str(c),' -g ',num2str(g),' -s 3 -p 0.01'];
model = svmtrain(t_train, p_train, cmd);
%%  仿真预测
T_sim2 = svmpredict(t_test , p_test , model);
相关文章
|
1天前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+turbo译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
本项目基于MATLAB 2022a实现图像传输通信系统的仿真,涵盖QPSK调制解调、扩频技术和Turbo译码。系统适用于无人机图像传输等高要求场景,确保图像质量和传输稳定性。通过仿真,验证了系统在不同信噪比下的性能,展示了图像的接收与恢复效果。核心代码实现了二进制数据到RGB图像的转换与显示,并保存不同条件下的结果。
16 6
|
2月前
|
资源调度 监控 算法
基于扩频解扩+LDPC编译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统主要用于高质量图像传输,如无人机、视频监控等场景。系统采用QPSK调制解调、扩频技术和LDPC译码,确保复杂电磁环境下的稳定性和清晰度。MATLAB仿真(2022a)验证了算法效果,核心程序包括信道编码、调制、扩频及解调等步骤,通过AWGN信道测试不同SNR下的性能表现。
70 6
基于扩频解扩+LDPC编译码的QPSK图传通信系统matlab误码率仿真,扩频参数可设置
|
1月前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+LDPC编译码的16QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统主要用于高质量图像传输,适用于无人机、视频监控等场景。系统采用16QAM调制解调、扩频技术和LDPC译码,确保复杂电磁环境下的稳定性和清晰度。MATLAB 2022a仿真结果显示图像传输效果良好,附带的操作视频详细介绍了仿真步骤。核心代码实现了图像的二进制转换、矩阵重组及RGB合并,确保图像正确显示并保存为.mat文件。
53 20
|
2月前
|
机器学习/深度学习 算法 数据安全/隐私保护
数据链中常见电磁干扰matlab仿真,对比噪声调频,线性调频,噪声,扫频,灵巧五种干扰模型
本项目展示了用于分析和模拟电磁干扰对数据链系统影响的算法。通过Matlab 2022a运行,提供无水印效果图预览。完整代码包含详细中文注释及操作视频。理论部分涵盖五种常见干扰模型:噪声调频、线性调频、噪声、扫频和灵巧干扰,详细介绍其原理并进行对比分析。灵巧干扰采用智能技术如认知无线电和机器学习,自适应调整干扰策略以优化效果。
|
2月前
|
监控 算法 数据安全/隐私保护
基于扩频解扩+turbo译码的64QAM图传通信系统matlab误码率仿真,扩频参数可设置
该通信系统基于MATLAB 2022a仿真,适用于高要求的图像传输场景(如无人机、视频监控等),采用64QAM调制解调、扩频技术和Turbo译码提高抗干扰能力。发射端包括图像源、64QAM调制器、扩频器等;接收端则有解扩器、64QAM解调器和Turbo译码器等。核心程序实现图像传输的编码、调制、信道传输及解码,确保图像质量和传输可靠性。
60 16
|
2月前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
213 13
|
2月前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
2月前
|
机器学习/深度学习 人工智能 算法
基于GRNN广义回归网络和MFCC的语音情绪识别matlab仿真,对比SVM和KNN
该语音情绪识别算法基于MATLAB 2022a开发,可识别如悲伤等情绪,置信度高达0.9559。核心程序含中文注释及操作视频。算法采用MFCC特征提取与GRNN广义回归网络,通过预加重、分帧、加窗、FFT、梅尔滤波器组、对数运算和DCT等步骤处理语音信号,实现高效的情绪分类。
|
6月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
272 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
6月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
162 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现

热门文章

最新文章