数值分析算法 MATLAB 实践 线性方程组 分解法

简介: 数值分析算法 MATLAB 实践 线性方程组 分解法

数值分析算法 MATLAB 实践 线性方程组 分解法

Lu分解法

% LUmethod分解矩阵
function [L,U]=LUmethod(A)
[rows,~]=size(A);
temp_mat=A;
L=zeros(rows);
for i=1:rows
    coefficient=temp_mat(:,i);
    coefficient=coefficient./coefficient(i);
    coefficient(1:i)=0;
    L(:,i)=coefficient;
    temp_mat=-coefficient*temp_mat(i,:)+temp_mat;
end
U=temp_mat;
L(eye(rows)==1)=1;
end
% LUmethod分解矩阵 求解线性方程组
function x=LUsolve(L,U,b)
[rows,~]=size(L);
aug_mat=[L,b];
for i=1:rows
    aug_mat(i,:)=aug_mat(i,:)./aug_mat(i,i);
    coefficient=-aug_mat(:,i);
    coefficient(1:i)=0;
    aug_mat=coefficient*aug_mat(i,:)+aug_mat;
end
aug_mat=[U,aug_mat(:,rows+1:end)];
for i=rows:-1:1
    aug_mat(i,:)=aug_mat(i,:)./aug_mat(i,i);
    coefficient=-aug_mat(:,i);
    coefficient(i:end)=0;
    aug_mat=coefficient*aug_mat(i,:)+aug_mat;
end
x=aug_mat(:,rows+1:end);
x=x';
end
function solution=LuFunmethon(M, Presion) 
 % LU分解 M为用户输入的增广矩阵
 % Precision为用户所输入的精度要求
    if nargin==2
      try
         digits(Precision);
      cath
         disp('你输入的精度有误');digits(10);
      end
    else
      digits(10);
    end     

    A=vpa(M)
    row=size(A,1);
    col=size(A,2);
    if ndims(A)~=2|(col-row)~=1
        disp('矩阵的大小有误');
        return
    end
    if det(M(:,1:row))==0
        disp('该方程的系数矩阵行列式为零');
        return
    end
%% 调用系统的LU命令
       [L,U,P]=lu(double(A));
      %% 回代求解过程
    for i=row:-1:1
        temp=U(i,col);
        for k=i+1:row
            temp=vpa(temp-t_solution(k)*U(i,k));
        end
            t_solution(i)=vpa(temp/U(i,i));
    end
    for i=1:row
        temp=t_solution(i);
        for k=1: i-1
            temp=vpa(temp-t_solution(k)*U(i,k));
        end
             solution(i)=temp;
    end
end

Cholesky分解

%% 0.平方根法解线性方程组,输出L矩阵和根
%% 1.对称正定矩阵的Cholesky分解
%对称正定矩阵A存在唯一的对角元素均为正数的下三角矩阵L,使得A=L*L'
%这种分解叫做Cholesky分解
A=[3,3,5;3,5,9;5,9,17];
b=[0;-2;-4];
%L=chol(A,'lower')基于矩阵A的对角线和下三角形生成下三角矩阵L,满足方程L*L'=A
L=chol(A,'lower')
%% 2.由Ly=b得到y
y=L\b;
%% 3.由L_转置*x=y得到方程组的解x
x=L'\y%输出线性方程组的根

function x = Cholesky_method(A,b)
%Cholesky平方根法解方程组
%A为方程组的系数矩阵 b为方程组的右端项;
    n = length(A);
    L = zeros(n);
    for k = 1:n
        delta = A(k,k);
        for j = 1:k-1
            delta = delta-L(k,j)^2;
        end

        L(k,k) = sqrt(delta);
        for i = k+1:n
            L(i,k) = A(i,k);
            for j = 1:n-1
                L(i,k) = L(i,k)-L(i,j)*L(k,j);
            end
            L(i,k) = L(i,k)/L(k,k);
        end

    end
    L 
    x =zeros(n,1);
    y =zeros(n,1);
    y(1) = b(1)/L(1,1);
    for i = 2:n
        ly = 0;
        for j = 1:i-1
            ly = ly+L(i,j)*y(i);
        end
        y(i) = (b(i)-ly)/L(i,i);
    end
    x(n) = y(n)/L(n,n);
    for i = n-1:-1:1
        lx = 0;
        for j = i+1:n
            lx = lx+L(j,i)*x(j);
        end
        x(i) = (y(i)-lx)/L(i,i);
    end
end

%Cholesky平方根法解方程组
%A为方程组的系数矩阵 b为方程组的右端项;
A6= [1 2 -1;2 5 1; -1 1 14];
b6 = [3;4;3];
x6 = Cholesky_method(A6,b6);
disp(['方程组的解:x6= ']);
disp(x6)

Cholesky分解--改进平方根法

function x=chol_ldlt_method(A,b)
%function x=chol_ldlt_method(A,b)
%Cholesky改进平方根法解方程组
%A为方程组的系数矩阵 b为方程组的右端项;
    n = length(A);
    L = eye(n);
    D = zeros(n);
    d = zeros(1,n);
    T = zeros(n);
    for k =1:n
        d(k) = A(k,k);
        for j = 1:k-1
            d(k)=d(k)-L(k,j)*T(k,j);
        end
        for i=k+1:n
            T(i,k) = A(i,k);
            for j = 1:k-1
                T(i,k) =T(i,k) -T(i,j)*L(k,j);
            end
            L(i,k) = T(i,k)/d(k);
        end
    end
    D = diag(d);
    L
    D
    x =zeros(n,1);
    y =zeros(n,1);
    d1 = zeros(n,1);
    d1 = diag(D);
    y(1) = b(1);
    for i =2:n
        ly = 0;
        for k=1:i-1
            ly = ly+L(i,k)*y(k);
        end
        y(i) = b(i)-ly;
    end
    x(n) = y(n)/d1(n);
    for i = n-1:-1:1
        lx = 0;
        for k=i+1:n
            lx = lx+L(k,i)*x(k);
        end
        x(i) = y(i)/d1(i)-lx;
end
%function x=chol_ldlt_method(A,b)
%Cholesky改进平方根法解方程组
%A为方程组的系数矩阵 b为方程组的右端项;
A7= [1 2 -1;2 5 1; -1 1 14];
b7 = [3;4;3];
x7=chol_ldlt_method(A7,b7);
disp(['方程组的解:x7= ']);
disp(x7)

奇异值分解法

%奇异值分解计算线性方程组
a=[6.5 -1 -1 3.6
6.2 7 -5 4
3 2.1 -6 4.8
1 5.6 3.7 2.1];
b=[12.3 21.4 -7.8 21]';
[u,s,v]=svd(a)
x=v*inv(s)*u'*b
目录
相关文章
|
2天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
105 80
|
20天前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
115 30
|
7天前
|
供应链 算法 调度
排队算法的matlab仿真,带GUI界面
该程序使用MATLAB 2022A版本实现排队算法的仿真,并带有GUI界面。程序支持单队列单服务台、单队列多服务台和多队列多服务台三种排队方式。核心函数`func_mms2`通过模拟到达时间和服务时间,计算阻塞率和利用率。排队论研究系统中顾客和服务台的交互行为,广泛应用于通信网络、生产调度和服务行业等领域,旨在优化系统性能,减少等待时间,提高资源利用率。
|
15天前
|
存储 算法
基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真
本项目基于HMM模型实现金融数据预测,包括模型训练与预测两部分。在MATLAB2022A上运行,通过计算状态转移和观测概率预测未来值,并绘制了预测值、真实值及预测误差的对比图。HMM模型适用于金融市场的时间序列分析,能够有效捕捉隐藏状态及其转换规律,为金融预测提供有力工具。
|
15天前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
20天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
18天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
1天前
|
算法
基于EO平衡优化器算法的目标函数最优值求解matlab仿真
本程序基于进化优化(EO)中的平衡优化器算法,在MATLAB2022A上实现九个测试函数的最优值求解及优化收敛曲线仿真。平衡优化器通过模拟生态系统平衡机制,动态调整搜索参数,确保种群多样性与收敛性的平衡,高效搜索全局或近全局最优解。程序核心为平衡优化算法,结合粒子群优化思想,引入动态调整策略,促进快速探索与有效利用解空间。
|
21天前
|
算法
基于WOA算法的SVDD参数寻优matlab仿真
该程序利用鲸鱼优化算法(WOA)对支持向量数据描述(SVDD)模型的参数进行优化,以提高数据分类的准确性。通过MATLAB2022A实现,展示了不同信噪比(SNR)下模型的分类误差。WOA通过模拟鲸鱼捕食行为,动态调整SVDD参数,如惩罚因子C和核函数参数γ,以寻找最优参数组合,增强模型的鲁棒性和泛化能力。
|
27天前
|
机器学习/深度学习 算法 Serverless
基于WOA-SVM的乳腺癌数据分类识别算法matlab仿真,对比BP神经网络和SVM
本项目利用鲸鱼优化算法(WOA)优化支持向量机(SVM)参数,针对乳腺癌早期诊断问题,通过MATLAB 2022a实现。核心代码包括参数初始化、目标函数计算、位置更新等步骤,并附有详细中文注释及操作视频。实验结果显示,WOA-SVM在提高分类精度和泛化能力方面表现出色,为乳腺癌的早期诊断提供了有效的技术支持。

热门文章

最新文章