数学建模统计分析 -- 聚类算法模型

简介: 数学建模统计分析 -- 聚类算法模型

统计分析 -- 聚类算法模型

距离分析

在这里插入图片描述

数据标准化

欧氏距离与量纲有关,因此,有时需要对数据进行预处理,
如标准化等。
在MATLAB中的命令是zscore,调用格式

Z = zscore(X)
输入X表示N行p列的原始观测矩阵,行为个体,列为指标。

输出Z为X的标准化矩阵:
Z = (X–ones(N,1)*mean(X)) ./(ones(N,1)* std(X)),

mean(X)为行向量,表示各个指标的均值估计,
std(X)表示指标的标准差估计。./表示对应元素相除,
ones(N,1)表示元素全为1的行向量,向量的长度为N。

K-means聚类

K-means聚类的算法流程:

  1. 指定需要划分的簇的个数K值(类的个数)
  2. 随机地选择K个数据对象作为初始的聚类中心(不一定要是我们的样本点)
  3. 计算其余的各个数据对象到这K个初始聚类中心的距离,把数据对象划归到距离它最近的那个中心所处在的簇类中;
  4. 调整新类并且重新计算出新类的中心;
  5. 循环步骤3和4,看中心是否收敛(不变)如果敛或达到迭代次数则停止循环;
  6. 结束。

K-means聚类特点

在这里插入图片描述

K-means++聚类算法

在这里插入图片描述

SPSS软件使用

在这里插入图片描述

code

%% 
% K-means 算法MATLAB实现
%-------------------------------------------------------------
%{
利用Matlab软件中的命令: kmeans,可以实现k-means聚类
对于要处理的数据 构造矩阵,矩阵X的每一行为每个个体的实际数据,每一列都是不同的指标
如果提供的数据不是按照规范模式,需要进行矩阵转置
x=y';     %矩阵x的行为个体,列为指标  
[a,b]=kmeans(x,2)  %分为2类,输出:  a为聚类的结果,b为聚类重心, 每一行表示一个类的重心
使用kmeans进行处理 
%}
%% 数据准备和初始化
clc
clear
load kdata.mat


[a,b]=kmeans(x,3);  %%分为3类输出
x1=x(find(a==1),:)   %提取第1类里的样品
x2=x(find(a==2),:)   %提取第2类里的样品
x3=x(find(a==3),:)   %提取第3类里的样品
sd1=std(x1)
sd2=std(x2)  
sd3=std(x3)  % 分别计算第1类和第2类第3类的标准差
plot(x(a==1,1),x(a==1,2),'r.',x(a==2,1),x(a==2,2),'b.',x(a==3,1),x(a==3,2),'g.','MarkerSize',10)  %作出聚类的散点图
title('k-means聚类分析散点图');

在这里插入图片描述

聚类分析--谱系分析

研究聚类的MATLAB实现,实现步骤大致如下:

  1. 输入数据矩阵,注意行与列的实际意义;
  2. 计算各样品之间的距离(行?列?)
    欧氏距离:d=pdist(A) % 注意计算A中各行之间的距离;
    绝对距离:d= pdist(A,'cityblock');
    明氏距离:d=pdist(A,'minkowski',r); % r要填上具体的实数;
    方差加权距离:d= pdist(A,'seuclid');
    马氏距离:d= pdist(A,'mahal');
    注意:以上命令输出的结果是一个行向量
  3. 选择不同的类间距离进行聚类
  4. 作出谱系聚类图
  5. 根据分类数目,输出聚类结果
试利用调查资料对16个地区进行聚类分析。

下表是我国16个地区农民1982年支出情况的抽样调查的汇总资料,每个地区都调查了反映每人平均生活消费支出情况的六个指标。

谱系聚类图
a=load('ho2.txt');%导入数据

d1=pdist(a);% 此时计算出各行之间的欧氏距离,

z1=linkage(d1);

z2=linkage(d1,'complete');

z3=linkage(d1,'average');

z4=linkage(d1,'centroid');

z5=linkage(d1,'ward');

R=[cophenet(z1,d1),cophenet(z2,d1),cophenet(z3,d1),cophenet(z4,d1),cophenet(z5,d1)]

H= dendrogram(z3)

T=cluster(z3,4)  %cluster 创建聚类,并作出谱系图

set(get(gca, 'Title'), 'String', '聚类分析-谱系聚类图');
k-means聚类分析散点图
[a,b]=kmeans(x,4);  %%分为4类输出
x1=x(find(a==1),:)   %提取第1类里的样品
x2=x(find(a==2),:)   %提取第2类里的样品
x3=x(find(a==3),:)   %提取第3类里的样品
x4=x(find(a==4),:)   %提取第3类里的样品
sd1=std(x1)
sd2=std(x2)  
sd3=std(x3)  % 分别计算第1类和第2类第3类的标准差
sd4=std(x4)  % 分别计算第1类和第2类第3类的标准差
plot(x(a==1,1),x(a==1,2),'r.',x(a==2,1),x(a==2,2),'b.',x(a==3,1),x(a==3,2),'g.',x(a==4,1),x(a==4,2),'y.','MarkerSize',15)  %作出聚类的散点图
title('k-means聚类分析散点图');

在这里插入图片描述

linkage函数
调用格式:Z=linkage(Y,‘method’)
输入值说明:Y为pdist函数返回的M*(M-1)/2个元素的行向量,用‘method’参数指定的算法计算系统聚类树。
method:可取值如下:
‘single’:最短距离法(默认);
‘complete’:最长距离法;
‘average’:未加权平均距离法;
‘weighted’: 加权平均法;
‘centroid’:质心距离法;
‘median’:加权质心距离法;
‘ward’:内平方距离法(最小方差算法)
返回值说明:Z为一个包含聚类树信息的(m-1)×3的矩阵,其中前两列为索引标识,表示哪两个序号的样本可以聚为同一类,第三列为这两个样本之间的距离。另外,除了M个样本以外,对于每次新产生的类,依次用M+1、M+2、…来标识
目录
相关文章
|
1天前
|
机器学习/深度学习 传感器 算法
【机器学习】在聚类算法中,使用曼哈顿距离和使用欧式距离有什么区别?
【5月更文挑战第12天】【机器学习】在聚类算法中,使用曼哈顿距离和使用欧式距离有什么区别?
|
1天前
|
机器学习/深度学习 算法 数据可视化
【机器学习】比较分层聚类(Hierarchical Clustering)和K-means聚类算法
【5月更文挑战第12天】【机器学习】比较分层聚类(Hierarchical Clustering)和K-means聚类算法
|
1天前
|
机器学习/深度学习 算法 数据挖掘
【机器学习】在使用K-means聚类算法时,如何选择K的值?
【5月更文挑战第11天】【机器学习】在使用K-means聚类算法时,如何选择K的值?
|
1天前
|
机器学习/深度学习 人工智能 算法
高性价比发文典范——101种机器学习算法组合革新骨肉瘤预后模型
随着高通量测序技术的飞速发展和多组学分析的广泛应用,科研人员在探索生物学奥秘时经常遇到一个令人又爱又恼的问题:如何从浩如烟海的数据中挖掘出潜在的疾病关联靶点?又如何构建一个全面而有效的诊断或预后模型?只有通过优雅的数据挖掘、精致的结果展示、深入的讨论分析,并且辅以充分的湿实验验证,我们才能锻造出一篇兼具深度与广度的“干湿结合”佳作。
18 0
高性价比发文典范——101种机器学习算法组合革新骨肉瘤预后模型
|
1天前
|
算法 调度
考虑需求响应的微网优化调度模型【粒子群算法】【matlab】
考虑需求响应的微网优化调度模型【粒子群算法】【matlab】
|
1天前
|
机器学习/深度学习 算法 数据挖掘
基于改进ISODATA算法的负荷场景曲线聚类(matlab代码)
基于改进ISODATA算法的负荷场景曲线聚类(matlab代码)
|
1天前
|
算法 调度
【免费】基于模型预测算法的含储能微网双层能量管理模型(MATLAB)
【免费】基于模型预测算法的含储能微网双层能量管理模型(MATLAB)
|
1天前
|
机器学习/深度学习 自然语言处理 算法
Python遗传算法GA对长短期记忆LSTM深度学习模型超参数调优分析司机数据|附数据代码
Python遗传算法GA对长短期记忆LSTM深度学习模型超参数调优分析司机数据|附数据代码
|
1天前
|
算法 搜索推荐
R语言混合SVD模型IBCF协同过滤推荐算法研究——以母婴购物平台为例
R语言混合SVD模型IBCF协同过滤推荐算法研究——以母婴购物平台为例
|
1天前
|
人工智能 算法 测试技术
论文介绍:进化算法优化模型融合策略
【5月更文挑战第3天】《进化算法优化模型融合策略》论文提出使用进化算法自动化创建和优化大型语言模型,通过模型融合提升性能并减少资源消耗。实验显示,这种方法在多种基准测试中取得先进性能,尤其在无特定任务训练情况下仍能超越参数更多模型。同时,该技术成功应用于创建具有文化意识的日语视觉-语言模型。然而,模型融合可能产生逻辑不连贯响应和准确性问题,未来工作将聚焦于图像扩散模型、自动源模型选择及生成自我改进的模型群体。[论文链接: https://arxiv.org/pdf/2403.13187.pdf]
113 1

热门文章

最新文章