【Python】GPU内存监控脚本

简介: 【Python】GPU内存监控脚本

相信很多小伙伴在项目中,需要监控GPU的使用状态,打开任务管理器,你会发现可以显示GPU的运行状态,但是无法将这些数据保留下来,这里我制作了python脚本用于监控专用GPU的使用情况!我使用的显卡是NVIDIA GeForce GTX 1660 Ti。

(关注“测试开发自动化” 弓中皓,获取更多学习内容)

一、知识预备

任务管理器中的专用GPU内存和共享GPU内存的含义是什么呢?

(1)专用GPU内存

分为两种情况:独显(独立显卡)和 集显(集成显卡)

独显:是指单独的GPU PCIe卡,专有GPU内存就是指该GPU显卡上自带的内存,它只能够被GPU使用,而且带宽很高,延迟很小。

集显:BIOS把一部分内存在内存初始化后保留下来给GPU专用

(2)共享GPU内存

是操作系统Windows从系统内存中划出来,优先给GPU使用的内存

(3)GPU内存

GPU内存=专用GPU内存+共享GPU内存

二、python代码实现

#!/usr/bin/python
# -*- coding: utf-8 -*-
import time
import pynvml
from matplotlib import pyplot as plt
import matplotlib.backends.backend_tkagg
class GPUMonitor(object):
    def __init__(self, sleep_time):
        pynvml.nvmlInit()
        pynvml.nvmlSystemGetDriverVersion()
        self.GPUCounts = pynvml.nvmlDeviceGetCount()
        self.GPU_counts_list = [[]] * self.GPUCounts
        self.time = [[]] * self.GPUCounts
        self.sleep_time = sleep_time  # 秒
    def monitor(self):
        try:
            n = 0
            while True:
                GPUCount = 0
                # 读取GPU句柄
                handle = pynvml.nvmlDeviceGetHandleByIndex(GPUCount)
                # 读取GPU内存信息
                info = pynvml.nvmlDeviceGetMemoryInfo(handle)
                total = f'{(info.total / 1024 / 1024 / 1024):.2f}'
                used = f'{(info.used / 1024 / 1024 / 1024):.2f}'
                free = f'{(info.free / 1024 / 1024 / 1024):.2f}'
                print(self.logfile(">>>>>>正在监控第{}块GPU内存<<<<<<<\n"
                                   "脚本已运行{}秒\n专用GPU内存:{}G\n"
                                   "已使用专用CPU内存:{}G\n剩余专用GPU内存:{}G\n"
                                   .format(GPUCount, n, float(total), float(used), float(free))))
                self.GPU_counts_list[GPUCount].append(float(used))
                self.time[GPUCount].append(n)
                self.paint(self.time[0], self.GPU_counts_list[0])
                time.sleep(self.sleep_time)
                n += self.sleep_time
        except:
            plt.savefig("CPU内存使用量.png")
            pynvml.nvmlShutdown()
    def paint(self, x_list, y_list):
        plt.clf()
        plt.plot(x_list, y_list)
        plt.title("GPU Usage Monitoring")
        plt.ylabel("GPU dedicated memory /G")
        plt.xlabel("time/s")
        plt.pause(0.1)  # 暂停一秒
        plt.ioff()
    def logfile(self, text):
        with open('image.log', 'a+', encoding='utf-8') as f:
            t = time.strftime('%y-%m-%d %H:%M:%S')
            text = t + " " + text + '\n'
            f.write(text)
        f.close()
        return text
    def abnormal(self):
        length = len(self.GPU_counts_list[0])
        average = sum(self.GPU_counts_list)/length
        self.logfile("平均专用GPU占用为:{}G".format(average))
        plt.savefig("CPU内存使用量.png")
if __name__ == "__main__":
    while True:
        times = input("请输入监控间隔时间(整秒>0),按回车键开启监控:")
        if times.isdigit():
            if int(times) > 0:
                break
    a = GPUMonitor(int(times))
    try:
        a.monitor()
    except:
        plt.savefig("CPU内存使用量.png")

三、使用方法

(1)运行python代码后会提示输入监控间隔时间,即每隔几秒监控一次(这里我设置的是整秒,也根据需求改成非整秒),这里我选择每隔一秒监控一次。

(2)脚本启动后,会看到内存监控脚本已经开始运行,并在终端打印了监控信息;

(3)同时,能够显示实时的监控折线图信息;

(4)如果需要保存,点击(3)步中下方的的保存按钮即可。

(5)同时,也会生成存储监控信息的日志文件,供使用者查看。

如果对您有帮助,收藏+关注再走吧!!!

(关注“测试开发自动化” 弓中皓,获取更多学习内容)


相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
1天前
|
监控 Java 计算机视觉
Python图像处理中的内存泄漏问题:原因、检测与解决方案
在Python图像处理中,内存泄漏是常见问题,尤其在处理大图像时。本文探讨了内存泄漏的原因(如大图像数据、循环引用、外部库使用等),并介绍了检测工具(如memory_profiler、objgraph、tracemalloc)和解决方法(如显式释放资源、避免循环引用、选择良好内存管理的库)。通过具体代码示例,帮助开发者有效应对内存泄漏挑战。
11 1
|
27天前
|
监控 算法 安全
深度洞察内网监控电脑:基于Python的流量分析算法
在当今数字化环境中,内网监控电脑作为“守城卫士”,通过流量分析算法确保内网安全、稳定运行。基于Python的流量分析算法,利用`scapy`等工具捕获和解析数据包,提取关键信息,区分正常与异常流量。结合机器学习和可视化技术,进一步提升内网监控的精准性和效率,助力企业防范潜在威胁,保障业务顺畅。本文深入探讨了Python在内网监控中的应用,展示了其实战代码及未来发展方向。
|
2月前
|
存储 运维 监控
探索局域网电脑监控软件:Python算法与数据结构的巧妙结合
在数字化时代,局域网电脑监控软件成为企业管理和IT运维的重要工具,确保数据安全和网络稳定。本文探讨其背后的关键技术——Python中的算法与数据结构,如字典用于高效存储设备信息,以及数据收集、异常检测和聚合算法提升监控效率。通过Python代码示例,展示了如何实现基本监控功能,帮助读者理解其工作原理并激发技术兴趣。
70 20
|
2月前
|
缓存 监控 算法
Python内存管理:掌握对象的生命周期与垃圾回收机制####
本文深入探讨了Python中的内存管理机制,特别是对象的生命周期和垃圾回收过程。通过理解引用计数、标记-清除及分代收集等核心概念,帮助开发者优化程序性能,避免内存泄漏。 ####
64 3
|
3月前
|
算法 Java 程序员
Python内存管理机制深度剖析####
本文将深入浅出地探讨Python中的内存管理机制,特别是其核心组件——垃圾收集器(Garbage Collector, GC)的工作原理。不同于传统的摘要概述,我们将通过一个虚拟的故事线,跟随“内存块”小M的一生,从诞生、使用到最终被回收的过程,来揭示Python是如何处理对象生命周期,确保高效利用系统资源的。 ####
46 1
|
3月前
|
安全 开发者 Python
Python的内存管理pymalloc
Python的内存管理pymalloc
|
3月前
|
安全 开发者 Python
Python的内存管理pymalloc
Python的内存管理pymalloc
|
3月前
|
监控 Java API
Python是如何实现内存管理的
Python是如何实现内存管理的
|
4月前
|
数据处理 Python
如何优化Python读取大文件的内存占用与性能
如何优化Python读取大文件的内存占用与性能
289 0
|
4月前
|
数据处理 Python
Python读取大文件的“坑“与内存占用检测
Python读取大文件的“坑“与内存占用检测
118 0

热门文章

最新文章

推荐镜像

更多