基于FPGA的DDS开发和实现,可修改输出正弦的频率和相位,包含testbench

简介: 基于FPGA的DDS开发和实现,可修改输出正弦的频率和相位,包含testbench

1.算法仿真效果
vivado2019.2仿真结果如下:

输出2个不同频率的正弦信号:

5f594909021f8a238efb4dae50774883_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

修改相位,得到如下所示。

b047ea708c5cc185eaca120a27fce25e_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

2.算法涉及理论知识概要
直接数字频率合成技术 (Direct Digital Synthesis)完全不同于我们己经熟悉的直接频率合成技术和锁相环频率合成技术。直接数字频率合成技术(简称DDS)的理论早在七十年代就被提出。它的基本原理就是利用采样定理,通过查表法产生波形,由于硬件技术的限制,DDS技术当时没能得到广泛应用。随着大规模集成电路技术的飞速发展,DDS技术的优越性己逐步显现出来。不少学者认为,DDS是产生信号和频率的一种理想方法,发展前景十分广阔。与其他频率合成方法相比较,直接数字频率合成技术的主要优点是易于程控,相位连续,输出频率稳定度高,分辨率高。其频率分辨率可以达到10-3。而且频率转换速度快,可小于100ns,特别适宜用在跳频无线通信系统。其相位噪声主要决定于参考时钟振荡器。

   DDS(Direct Digital frequency Synthesis)即直接数字频率合成器,是一种新型的频率合成技术,具有较高的频率分辨率,快速的频率切换,稳定性好,可灵活产生多种信号的优点。因此,在现代电子系统及设备的频率源设计中,尤其在通信领域,直接数字频率合成器的应用越来越广泛。在数字化的调制解调模块中。DDS取代了VCO(模拟的压控振荡器),被大量应用。这种合成技术是一种利用数字技术来控制信号的相位增量的技术,它采用插值取样的方式,将要合成的正弦波波形用若干个采样点的取值来代替,然后依次等时间间隔输出这些取值,每个采样点的值由预先存储的数字值经D/A转换后得到。

   DDS工作原理框图如图1所示。其基本结构包括:相位累加器PA、波形查询表ROM、数模转换器DAC及低通滤波器。

03697828ac6043910019d5d6f3e683bc_watermark,size_14,text_QDUxQ1RP5Y2a5a6i,color_FFFFFF,t_100,g_se,x_10,y_10,shadow_20,type_ZmFuZ3poZW5naGVpdGk=.png

   DDS的工作过程为:在参考时钟fc的作用下,相位累加器对频率控制字FCW(Frequency Control Word)进行线性累加,将其高W位作为地址码通过波形查值表ROM变换,产生D位对应信号波形的数字序列,再由数模转换器DAC将其转化为阶梯模拟电压波形后由具有内插作用的低通滤波器LPF将其平滑为连续的正弦波形作为输出。

   一个N位的相位累加器对应相位圆2N上个相位点,其最低相位分辨率为θmin=Δθ=2π/2N。在图2中N为4,则有16个相位值和16个幅度码相对应。该幅度存储于波形存储器中,在频率控制字FCW的作用下,相位累加器给出不同的相位码,对波形存储器寻址,完成相位--幅度变换,经DAC变成阶梯正弦波信号,再通过低通滤波器平滑,便得到模拟正弦波输出。

   自第一部正弦波发生器问世以来,函数发生器的设计已经发生了多次演进,在当前数字领域中,大多数新型函数发生器都在采用直接数字频率合成技术。DDS在大部分操作中使用数字电路,从而提供了数字操作拥有的许多优势。

第一,输出信号的频率精度可以达到作为发生器参考信号使用的晶体控制振荡器的水平。如果想实现更高的精度,也可以采用函数发生器本身的温度补偿晶体振荡器产生。

第二,DDS信号发生器的数字电路可以实现与数字电路相同的频率精度。

第三,如果拥有RAM波形存储器,那么DDS函数发生器可以重现几乎任何波形。因此,函数发生器现在的功能要远远超过传统函数发生器。对称性可变的波形现在已经是标配功能,另外还可以内置各种不常见的波形,如指数上升和下降型波形或正弦脉冲型波形等。但由于DDS的全数字结构,使得直接数字频率合成器不可避免的拥有以下两个缺点。

第一,其杂散分量丰富。这些杂散分量主要由相位舍位、幅度量化和DAC的非理想特性所引起。

第二,输出频带受限。由于DDS内部DAC和ROM的工作速度限制,使得DDS输出的最高频率受到极大的限制。

3.Verilog核心程序
````timescale 1ns / 1ps

module TEST_tops;
reg i_clk;
reg i_rst;
reg[15:0] i_Fre1;
reg[15:0] i_phase1;
reg[15:0] i_Fre2;
reg[15:0] i_phase2;
wire[15:0] o_sin1;
wire[15:0] o_sin2;

tops tops_u(
.i_clk (i_clk),
.i_rst (i_rst),
.i_Fre1 (i_Fre1),
.i_phase1 (i_phase1),
.i_Fre2 (i_Fre2),
.i_phase2 (i_phase2),
.o_sin1 (o_sin1),
.o_sin2 (o_sin2)
);

initial
begin
i_clk = 1'b1;
i_rst = 1'b1;
i_Fre1=16'd0;
i_phase1=16'd0;
i_Fre2=16'd0;
i_phase2=16'd6000;

100

i_rst = 1'b0;
i_Fre1=16'd32;
i_phase1=16'd0;
i_Fre2=16'd64;
i_phase2=16'd32000;
end
always #5 i_clk=~i_clk;
endmodule
```

相关文章
|
10天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的1024QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的1024QAM调制解调系统的仿真与实现。通过Vivado 2019.2进行仿真,分别在SNR=40dB和35dB下验证了算法效果,并将数据导入Matlab生成星座图。1024QAM调制将10比特映射到复数平面上的1024个星座点之一,适用于高数据传输速率的应用。系统包含数据接口、串并转换、星座映射、调制器、解调器等模块。Verilog核心程序实现了调制、加噪声信道和解调过程,并统计误码率。
31 1
|
1月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的64QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了基于FPGA的64QAM调制解调通信系统的设计与实现,包括信号生成、调制、解调和误码率测试。系统在Vivado 2019.2中进行了仿真,通过设置不同SNR值(15、20、25)验证了系统的性能,并展示了相应的星座图。核心程序使用Verilog语言编写,加入了信道噪声模块和误码率统计功能,提升了仿真效率。
44 4
|
1月前
|
监控 算法 数据安全/隐私保护
基于三帧差算法的运动目标检测系统FPGA实现,包含testbench和MATLAB辅助验证程序
本项目展示了基于FPGA与MATLAB实现的三帧差算法运动目标检测。使用Vivado 2019.2和MATLAB 2022a开发环境,通过对比连续三帧图像的像素值变化,有效识别运动区域。项目包括完整无水印的运行效果预览、详细中文注释的代码及操作步骤视频,适合学习和研究。
|
1月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本项目基于FPGA实现16QAM调制解调通信系统,使用Verilog语言编写,包括信道模块、误码率统计模块。通过设置不同SNR值(如8dB、12dB、16dB),仿真测试系统的误码性能。项目提供了完整的RTL结构图及操作视频,便于理解和操作。核心程序实现了信号的生成、调制、信道传输、解调及误码统计等功能。
42 3
|
13天前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的256QAM基带通信系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本文介绍了256QAM调制解调算法的仿真效果及理论基础。使用Vivado 2019.2进行仿真,分别在SNR为40dB、32dB和24dB下生成星座图,并导入Matlab进行分析。256QAM通过将8比特数据映射到复平面上的256个点,实现高效的数据传输。Verilog核心程序包括调制、信道噪声添加和解调模块,最终统计误码率。
24 0
|
6月前
|
机器学习/深度学习 算法 异构计算
m基于FPGA的多通道FIR滤波器verilog实现,包含testbench测试文件
本文介绍了使用VIVADO 2019.2仿真的多通道FIR滤波器设计。展示了系统RTL结构图,并简述了FIR滤波器的基本理论,包括单通道和多通道的概念、常见结构及设计方法,如窗函数法、频率采样法、优化算法和机器学习方法。此外,还提供了Verilog核心程序代码,用于实现4通道滤波器模块,包含时钟、复位信号及输入输出接口的定义。
177 7
|
1月前
|
存储 算法 数据处理
基于FPGA的8PSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
本系统在原有的8PSK调制解调基础上,新增了高斯信道与误码率统计模块,验证了不同SNR条件下的8PSK性能。VIVADO2019.2仿真结果显示,在SNR分别为30dB、15dB和10dB时,系统表现出不同的误码率和星座图分布。8PSK作为一种高效的相位调制技术,广泛应用于无线通信中。FPGA凭借其高度灵活性和并行处理能力,成为实现此类复杂算法的理想平台。系统RTL结构展示了各模块间的连接与协同工作。
51 16
|
6月前
|
编解码 算法 异构计算
基于FPGA的NC图像质量评估verilog实现,包含testbench和MATLAB辅助验证程序
在Vivado 2019.2和Matlab 2022a中测试的图像质量评估算法展示了效果。该算法基于NC指标,衡量图像与原始图像的相似度,关注分辨率、色彩深度和失真。提供的Verilog代码段用于读取并比较两个BMP文件,计算NC值。
|
1月前
|
算法 数据安全/隐私保护 异构计算
基于FPGA的16PSK调制解调系统,包含testbench,高斯信道模块,误码率统计模块,可以设置不同SNR
### 简介 本项目采用VIVADO 2019.2进行了十六进制相位移键控(16PSK)算法仿真,结果显示,在SNR=30dB时效果为Tttttttttttttt12,在SNR=20dB时效果为Tttttttttttttt34。系统RTL结构如Tttttttttttttt555555所示。16PSK是一种高效的相位调制技术,能在每个符号时间内传输4比特信息,适用于高速数据传输。其工作原理包括将比特流映射到16个相位状态之一(Tttttttttttttt777777),并通过匹配滤波和决策进行解调。具体Verilog核心程序见完整代码。
36 1
|
6月前
|
算法 异构计算
m基于FPGA的MPPT最大功率跟踪算法verilog实现,包含testbench
该内容包括三部分:1) 展示了Vivado 2019.2和Matlab中关于某种算法的仿真结果图像,可能与太阳能光伏系统的最大功率点跟踪(MPPT)相关。2) 简述了MPPT中的爬山法原理,通过调整光伏电池工作点以找到最大功率输出。3) 提供了一个Verilog程序模块`MPPT_test_tops`,用于测试MPPT算法,其中包含`UI_test`和`MPPT_module_U`两个子模块,处理光伏电流和电压信号。
69 1

热门文章

最新文章