卷积网络与全连接网络比较分析

简介: 卷积网络与全连接网络比较分析

问题

卷积网络与全连接网络对于图像分类的功能上谁更加好,及在同一变量的情况下谁的精度高?


方法

要想两种网络进行比较,要做到输出的通道数要相同,大小要保持一致,学习率一致,优化器使用一种。对于输出通道数的选择,这里统一选择10,

学习率统一为0.1,优化器我们选择momentum = 0.5.

首先分类图数据来自torchvision的datasets

1、对全连接进行实验:

全连接网络模型

class MyNet(nn.Module):
   # 5.2 定义网络有哪些层,这些层都作为成员变量
   def __init__(self) -> None:
       super().__init__()
       self.flatten = nn.Flatten() # 将28X28的图像拉伸为784维向量
       self.fc1 = nn.Linear(in_features=784, out_features=512)
       # 对应Layer3 也就是输出层
       self.fc2 = nn.Linear(in_features=512, out_features=10)
   # 5.3 定义数据在网络中的流动
   # x - 1*28*28 C*H*W C表示通道数,H表示图像高度,W表示图像宽度
   def forward(self, x):
       # x为输出层 28*28的图像
       x = self.flatten(x)  # 输出:784,对于图Layer1
       x = self.fc1(x) # 输出:512, Layer2
       out = self.fc2(x)  # 输出:10, Layer3

运行10周期:

最高精度为92.15&

2、对卷积进行实验:

卷积网络模型

class MyNet(nn.Module):
   def __init__(self):
       super(MyNet, self).__init__()
       self.conv_unit=nn.Sequential(
           nn.Conv2d(in_channels=1,out_channels=16,kernel_size=3,stride=1,padding=1),
           nn.MaxPool2d(kernel_size=2,stride=2),
           nn.Conv2d(in_channels=16,out_channels=32,kernel_size=3,stride=1,padding=1),
           nn.MaxPool2d(kernel_size=2, stride=2),
           nn.Conv2d(in_channels=32,out_channels=64,kernel_size=3,stride=1,padding=1),
           nn.AdaptiveMaxPool2d(1),
           nn.Conv2d(in_channels=64,out_channels=128,kernel_size=3,stride=1,padding=1)
       )
       self.fc_unit=nn.Sequential(
           nn.Linear(128*1*1,512),
           nn.Linear(512,10)
       )
   def forward(self,x):
       x=self.conv_unit(x)
       x=torch.flatten(x,1)
       out=self.fc_unit(x)
       return out

运行10周期:

最高精度为99.0%


结语

通过本次全连接网络和卷积网络都运行10个周期得比较的实验中所得,卷积网络分类的精度远高于全连接网络的分类精度。实验不足的地方在于没有将层数保持一致,由于时间原因,运行周期较小,实验次数较少。

目录
打赏
0
0
0
0
14
分享
相关文章
RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
113 9
RT-DETR改进策略【Neck】| BiFPN:双向特征金字塔网络-跨尺度连接和加权特征融合
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
49 3
RT-DETR改进策略【模型轻量化】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络
Deepseek 3FS解读与源码分析(2):网络通信模块分析
2025年2月28日,DeepSeek 正式开源其颠覆性文件系统Fire-Flyer 3FS(以下简称3FS),重新定义了分布式存储的性能边界。本文基于DeepSeek发表的技术报告与开源代码,深度解析 3FS 网络通信模块的核心设计及其对AI基础设施的革新意义。
Deepseek 3FS解读与源码分析(2):网络通信模块分析
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
76 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
121 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
当虚拟机出现网络连接问题时,应该先检查Hyper-V的网卡连接配置
当虚拟机出现网络连接问题时,应首先检查Hyper-V的网卡配置。具体步骤包括:确认虚拟机运行状态、检查虚拟交换机类型和物理网卡连接、确保虚拟机网络适配器正确连接到虚拟交换机,并验证网络配置(IP地址等)。常见问题如虚拟交换机配置错误、网络适配器未连接或防火墙阻止连接,可通过重新配置或调整设置解决。必要时重启虚拟机和宿主机,查看事件日志或联系技术支持以进一步排查问题。
RT-DETR改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进RT-DETR颈部网络
RT-DETR改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进RT-DETR颈部网络
65 12
RT-DETR改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进RT-DETR颈部网络
YOLOv11改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进v11颈部网络
YOLOv11改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进v11颈部网络
199 10
YOLOv11改进策略【Neck】| GFPN 超越BiFPN 通过跳层连接和跨尺度连接改进v11颈部网络
RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
47 5
RT-DETR改进策略【Conv和Transformer】| TPAMI-2024 Conv2Former 利用卷积调制操作和大核卷积简化自注意力机制,提高网络性能
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。

热门文章

最新文章