LLM 系列 | 09:吴恩达ChatGPT Prompt课程实践:以智能客服邮件为例

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
实时计算 Flink 版,5000CU*H 3个月
简介: 主要介绍如何用ChatGPT进行文本扩展,并以如何根据客户评价和情感撰写自定义电子邮件为例详细说明。

简介

漠漠水田飞白鹭,阴阴夏木啭黄鹂。小伙伴们好,我是微信公众号《小窗幽记机器学习》的小编:卖铁观音的小女孩。紧接前面几篇ChatGPT Prompt工程系列:LLM 系列 | 04:ChatGPT Prompt编写指南05:如何优化ChatGPT Prompt?06:ChatGPT Prompt实践:文本摘要&推断&。今天这篇小作文主要介绍如何用ChatGPT进行文本扩展,并以如何根据客户评价和情感撰写自定义电子邮件为例详细说明。

这里指的文本扩展(Expanding)是将短文本,例如一组说明或主题列表,输入到大型语言模型LLM中,让模型生成更长的文本,例如基于某个主题的电子邮件或论文。这样做有一些很实用的用途,例如将大型语言模型用作头脑风暴的工具。但这种做法也存在一些问题,例如某些人可能会使用它来生成大量垃圾邮件。因此,当你使用大型语言模型的这些功能时,请仅以负责任的方式和有益于人们的方式使用它们。

在这个章节中,将介绍如何基于 OpenAI API 生成适用于每个客户评价的客服电子邮件。在这个过程还将使用模型的另一个输入参数:温度系数。该参数控制模型产生回复的多样性程度。

环境准备

import openai
import os

openai.api_key  = "sk-xxx" 

import os
os.environ['HTTP_PROXY'] = "http://XXX:xx"
os.environ['HTTPS_PROXY'] = "http://XXXX:xx"

# 一个封装 OpenAI 接口的函数,参数为 Prompt,返回对应结果
def get_completion(prompt, model="gpt-3.5-turbo", temperature=0):
    '''
    prompt: 对应的提示
    model: 调用的模型,默认为 gpt-3.5-turbo(ChatGPT),有内测资格的用户可以选择 gpt-4
    temperature: 温度系数
    '''
    messages = [{"role": "user", "content": prompt}]
    response = openai.ChatCompletion.create(
        model=model,
        messages=messages,
        temperature=temperature, # 模型输出的温度系数,控制输出的随机程度
    )
    # 调用 OpenAI 的 ChatCompletion 接口
    return response.choices[0].message["content"]

定制客服邮件

如何根据客户评价和情感撰写自定义电子邮件作为回复?使用 LLM 根据客户评价和评论情感生成定制电子邮件,对于给定的客户评价和情感,生成自定义回复。

首先给出一个示例,包括一个评论及对应的情感。

# 我们可以在推理那章学习到如何对一个评论判断其情感倾向
sentiment = "negative"

# 一个产品的评价
review = f"""
他们在11月份的季节性销售期间以约49美元的价格出售17件套装,折扣约为一半。\
但由于某些原因(可能是价格欺诈),到了12月第二周,同样的套装价格全都涨到了70美元到89美元不等。\
11件套装的价格也上涨了大约10美元左右。\
虽然外观看起来还可以,但基座上锁定刀片的部分看起来不如几年前的早期版本那么好。\
不过我打算非常温柔地使用它,例如,\
我会先在搅拌机中将像豆子、冰、米饭等硬物研磨,然后再制成所需的份量,\
切换到打蛋器制作更细的面粉,或者在制作冰沙时先使用交叉切割刀片,然后使用平面刀片制作更细/不粘的效果。\
制作冰沙时,特别提示:\
将水果和蔬菜切碎并冷冻(如果使用菠菜,则轻轻煮软菠菜,然后冷冻直到使用;\
如果制作果酱,则使用小到中号的食品处理器),这样可以避免在制作冰沙时添加太多冰块。\
大约一年后,电机发出奇怪的噪音,我打电话给客服,但保修已经过期了,所以我不得不再买一个。\
总的来说,这些产品的总体质量已经下降,因此它们依靠品牌认可和消费者忠诚度来维持销售。\
货物在两天内到达。
"""

这里使用文本推断章节中的情感提取Prompt。这是一个关于搅拌机的客户评价,现在我们将根据情感定制回复。

这里的指令是:
假设你是一个客户服务AI助手,你的任务是为客户发送电子邮件回复,根据通过三个反引号分隔的客户电子邮件,生成一封回复以感谢客户的评价。

具体如下:

prompt = f"""
你是一位客户服务的AI助手。
你的任务是给一位重要客户发送邮件回复。
根据客户通过“```”分隔的评价,生成回复以感谢客户的评价。提醒模型使用评价中的具体细节
用简明而专业的语气写信。
作为“AI客户代理”签署电子邮件。
客户评论:
```{review}```
评论情感:{sentiment}
"""
response = get_completion(prompt)
print(response)

生成结果如下:

尊敬的客户,

感谢您对我们产品的评价。我们非常重视您的反馈,对于您提到的问题,我们深表歉意。我们会尽快采取措施,改进我们的产品质量和服务。

我们很高兴您对我们的交付速度感到满意。同时,我们也非常感谢您分享了您对我们产品的使用方法和技巧。我们会将这些细节纳入我们的产品使用说明中,以帮助更多的客户更好地使用我们的产品。

如果您有任何其他问题或建议,请随时联系我们的客服团队。我们将竭诚为您服务。

此致,

AI客户代理

使用温度系数

接下来,我们将使用语言模型中一个称为“温度”(温度系数)的参数,它将控制模型回复的多样性。我们可以将温度视为模型探索或随机性的程度。其实就是探索和利用,即Exploration和Exploitation直接的平衡。

例如,在一个特定的短语中,"我的最爱食品"最有可能的下一个词是"比萨",其次最有可能的是"寿司"和"塔可"。因此,在温度系数为零时,模型将总是选择最有可能的下一个词,而在较高的温度系数下,它还将选择其中一个不太可能的词。在更高的温度系数下,它甚至可能选择"塔可",而这种可能性仅为五分之一。可以想象,随着模型继续生成更多单词的最终响应,"我的最爱食品是比萨"将会与第一个响应"我的最爱食品是塔可"产生差异。因此,随着模型的继续,这两个响应将变得越来越不同。

一般来说,在构建需要可预测响应的应用程序时,建议将温度系数设置为零。在前面的小作文里面,一直将温度系数设置为零。如果正在尝试构建一个可靠和可预测的系统,应该将温度系数设置为零,以确保输出结果的一致性。如果尝试以更具创意的方式使用模型,可能需要更广泛地输出不同的结果,那么可以使用更大的温度系数。

下面将温度系数设置为 0.7:

prompt = f"""
你是一名客户服务的AI助手。
你的任务是给一位重要的客户发送邮件回复。
根据通过“```”分隔的客户电子邮件生成回复,以感谢客户的评价。
如果情感是积极的或中性的,感谢他们的评价。
如果情感是消极的,道歉并建议他们联系客户服务。
请确保使用评论中的具体细节。
以简明和专业的语气写信。
以“AI客户代理”的名义签署电子邮件。
客户评价:```{review}```
评论情感:{sentiment}
"""
response = get_completion(prompt, temperature=0.7)
print(response)

输出结果如下:

尊敬的客户,

非常感谢您对我们产品的评价。我们对您的不满深表歉意。我们一直致力于提供高质量的产品和服务,但显然我们在这次失败中没有达到您的期望。

我们非常关注您提到的问题,并确保这些问题得到解决。我们建议您联系我们的客户服务,以寻求进一步的帮助,并希望我们能够取得您的信任和满意。

再次感谢您对我们产品的反馈,我们会尽全力改进和提高我们的服务质量。祝您生活愉快!

此致,

AI客户代理

在温度系数为零时,每次执行相同的Prompt时,每次运行的输出结果应该是相同的。而使用温度为0.7,则每次都会获得不同的输出。

所以,可以看到它与我们之前收到的电子邮件不同。让我们再次执行它,以显示我们将再次获得不同的电子邮件。

因此,建议试试改变温度系数的值,以查看输出如何变化。总之,在更大的温度系数下,模型的输出更加随机。几乎可以将其视为在更大的温度系数下,AI助手更易分心,但也许更有创造力。

相关文章
|
1月前
|
数据采集 自然语言处理 数据挖掘
利用ChatGPT进行数据分析——如何提出一个好的prompt
利用ChatGPT进行数据分析——如何提出一个好的prompt
|
15天前
|
JSON 数据可视化 NoSQL
基于LLM Graph Transformer的知识图谱构建技术研究:LangChain框架下转换机制实践
本文介绍了LangChain的LLM Graph Transformer框架,探讨了文本到图谱转换的双模式实现机制。基于工具的模式利用结构化输出和函数调用,简化了提示工程并支持属性提取;基于提示的模式则为不支持工具调用的模型提供了备选方案。通过精确定义图谱模式(包括节点类型、关系类型及其约束),显著提升了提取结果的一致性和可靠性。LLM Graph Transformer为非结构化数据的结构化表示提供了可靠的技术方案,支持RAG应用和复杂查询处理。
61 2
基于LLM Graph Transformer的知识图谱构建技术研究:LangChain框架下转换机制实践
|
7天前
|
数据采集 人工智能 自然语言处理
万字干货|复杂表格多Agent方案:从LLM洞察、系统性 思考到实践经验总结
笔者结合实践经验以近期在负责的复杂表格智能问答为切入点,结合大模型的哲学三问(“是谁、从哪里来、到哪里去”),穿插阐述自己对大模型的一些理解与判断,以及面向公共云LLM的建设模式思考,并分享软件设计+模型算法结合的一些研发实践经验。
|
10天前
|
人工智能 自然语言处理
重要的事情说两遍!Prompt复读机,显著提高LLM推理能力
【10月更文挑战第30天】本文介绍了一种名为“问题重读”(Question Re-reading)的提示策略,旨在提高大型语言模型(LLMs)的推理能力。该策略受人类学习和问题解决过程的启发,通过重新审视输入提示中的问题信息,使LLMs能够提取更深层次的见解、识别复杂模式,并建立更细致的联系。实验结果显示,问题重读策略在多个推理任务上显著提升了模型性能。
24 2
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
企业内训|LLM大模型技术在金融领域的应用及实践-某商业银行分行IT团队
本企业培训是TsingtaoAI技术团队专们为某商业银行分行IT团队开发的LLM大模型技术课程。课程深入分析大模型在金融行业中的发展趋势、底层技术及应用场景,重点提升学员在大模型应用中的实际操作能力与业务场景适应力。通过对全球商用 LLM 产品及国内外技术生态的深度对比,学员将了解大模型在不同企业中的发展路径,掌握如 GPT 系列、Claude 系列、文心一言等大模型的前沿技术。针对金融行业的业务需求,学员将学会如何结合多模态技术改进用户体验、数据分析等服务流程,并掌握大模型训练与工具链的实操技术,尤其是模型的微调、迁移学习与压缩技术。
58 2
|
1月前
|
人工智能 自然语言处理 数据挖掘
利用小蜜蜂AI智能问答ChatGPT+AI高清绘图生成图文故事案例
利用小蜜蜂AI智能问答ChatGPT+AI高清绘图生成图文故事案例
|
1月前
|
自然语言处理
从原理上总结chatGPT的Prompt的方法
从原理上总结chatGPT的Prompt的方法
32 0
ChatGPT高效提问—prompt实践(智能翻译)
ChatGPT高效提问—prompt实践(智能翻译)
|
1月前
|
人工智能
ChatGPT高效提问—prompt实践(文案助手)
ChatGPT高效提问—prompt实践(文案助手)
|
1月前
|
机器学习/深度学习 算法 搜索推荐
ChatGPT高效提问—prompt实践(智能辅导-心理咨询-职业规划)
ChatGPT高效提问—prompt实践(智能辅导-心理咨询-职业规划)