如何实时统计最近 15 秒的商品销售额|Flink-Learning 实战营

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: 想要了解如何使用 Flink 实时统计最近 15 秒的商品销售额吗?本实验将以阿里云实时计算 Flink 版为基础,使用 Flink 自带的 MySQL Connector 连接 RDS 云数据库实例,并以实时商品销售数据统计的例子,引导开发者上手 Connector 的数据捕获、数据写入等功能。

为进一步帮助开发者学习使用 Flink,Apache Flink 中文社区近期发起 Flink-Learning 实战营项目。本次实战营通过真实有趣的实战场景帮助开发者实操体验 Flink,课程包括实时数据接入、实时数据分析、实时数据应用的场景实。并结合小松鼠助教模式,全方位帮助入营开发者轻松玩转 Flink,点击下方图片扫码即刻入营

本期内容详细介绍 Flink 实战营第一期实战。


想要了解如何使用 Flink 实时统计最近 15 秒的商品销售额吗?本实验将以阿里云实时计算 Flink 版为基础,使用 Flink 自带的 MySQL Connector 连接 RDS 云数据库实例,并以实时商品销售数据统计的例子,引导开发者上手 Connector 的数据捕获、数据写入等功能。

完成本次实验后,您将掌握的知识有:

  • 使用 Flink 实时计算平台创建并提交作业的方法;
  • 编写基于 Flink Table API SQL 语句的能力;
  • 使用 MySQL Connector 对数据库进行读写的方法。

Flink MySQL Connector 简介

MySQL Connector 可以将本地或远程的 MySQL 数据库连接到 Flink 中,并方便地使用 Flink Table API 与之交互、捕获数据变更、并将处理结果写回数据库。本实验主要介绍如何在阿里云实时计算平台上使用 Flink MySQL 连接器的相关功能,并使用 Table API 编写一个简单的例子,尝试 MySQL 作为源表、维表、汇表的不同功能。

步骤一:创建资源

开始实验之前,您需要开通阿里云实时计算 Flink 版,创建实验资源。

步骤二:创建数据库表

在这个例子中,我们将创建三张数据表,分别作为源表、维表、汇表,演示 MySQL Connector 的不同功能。

  1. 进入云数据库 RDS 后台,并登录刚刚创建资源的后台页面。
  2. 点击左侧边栏的 + 加号按钮,创建一个测试用数据库,然后在右侧命令区输入以下建表指令并执行:
-- Source Table;
CREATE TABLE `source_table` (
  `id` int unsigned NOT NULL AUTO_INCREMENT,
  `good_id` int DEFAULT NULL,
  `amount` int DEFAULT NULL,
  `record_time` timestamp NULL DEFAULT NULL,
  PRIMARY KEY (`id`)
);

-- Dimension Table;
CREATE TABLE `dimension_table` (
  `good_id` int unsigned NOT NULL,
  `good_name` varchar(256) DEFAULT NULL,
  `good_price` int DEFAULT NULL,
  PRIMARY KEY (`good_id`)
);

-- Sink Table;
CREATE TABLE `sink_table` (
  `record_timestamp` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
  `good_name` varchar(128) CHARACTER SET utf8 COLLATE utf8_general_ci DEFAULT NULL,
  `sell_amount` int DEFAULT NULL,
  PRIMARY KEY (`record_timestamp`)
);

步骤三:创建 Flink 作业

  1. 进入实时计算 Flink 平台,点击左侧边栏中的「应用」—「作业开发」菜单,并点击顶部工具栏的「新建」按钮新建一个作业。作业名字任意,类型选择「流作业 / SQL」,其余设置保持默认。如下所示:

1

  1. 成功创建作业后,右侧编辑窗格应该显示新作业的内容:

2

  1. 接下来,我们在右侧编辑窗格中输入以下语句来创建一张临时表,并使用 MySQL CDC 连接器实时捕获 source_table的变化:
CREATE TEMPORARY TABLE source_table (
    id INT NOT NULL PRIMARY KEY NOT ENFORCED,
    record_time TIMESTAMP_LTZ(3),
    good_id INT,
    amount INT,
    WATERMARK FOR record_time AS record_time - INTERVAL '5' SECOND
) WITH (
    'connector' = 'mysql-cdc',
    'hostname' = '******************.mysql.rds.aliyuncs.com',
    'port' = '3306',
    'username' = '***********',
    'password' = '***********',
    'database-name' = '***********',
    'table-name' = 'source_table'
);

需要将 hostname参数替换为早些时候创建资源的域名、将 usernamepassword参数替换为数据库登录用户名及密码、将 database-name参数替换为之前在 RDS 后台中创建的数据库名称。

其中,'connector' = 'mysql-cdc'指定了使用 MySQL CDC 连接器来捕获变化数据。您需要使用准备步骤中申请的 RDS MySQL URL、用户名、密码,以及之前创建的数据库名替换对应部分。

任何时候您都可以点击顶部工具栏中的「验证」按钮,来确认作业 Flink SQL 语句中是否存在语法错误。

  1. 为了测试是否成功地捕获了源表数据,紧接着在下面写一行 SELECT * FROM source_table;语句,并点击工具栏中的「执行」按钮。接着,向 source_table表中插入一些数据。如果控制台中打印了相应的数据行,则说明捕获成功,如下图所示:
    3

  2. 接下来,我们希望对原始数据按照时间窗口进行分组计算。我们使用 TUMBLE相关窗口函数结合 GROUP BY,将长度 15 秒内的订单数据按照商品 ID 进行归类,并使用 SUM计算其销售总额。我们在 Flink 作业编辑窗格中输入如下代码:

SELECT 
  good_id, 
  tumble_start(
    record_time, interval '15' seconds
  ) AS record_timestamp, 
  sum(amount) AS total_amount 
FROM 
  source_table 
GROUP BY 
  tumble (
    record_time, interval '15' seconds
  ), 
  good_id;

为了测试这一效果,需要向数据库中插入多条数据。你可以在 RDS 中执行附件中的「示例数据.sql」来插入数据,或者使用「示例数据生成.py」脚本实时地插入数据。

在保证源表中有数据的情况下,再次执行 Flink 作业,观察控制台的输出结果:

4

  1. 在这个业务场景中,购买商品信息使用 good_id记录,而商品 ID 到可读商品名字的映射表、每件商品的价格等信息则存储在另一张维度表(Dimension Table)中。我们同样可以使用 Flink SQL 连接维度表,只需在 Flink 作业中编写下面的语句:
CREATE TEMPORARY TABLE dimension_table (
    good_id INT NOT NULL PRIMARY KEY NOT ENFORCED,
    good_name VARCHAR(256),
    good_price INT
) WITH (
    'connector' = 'mysql',
    'hostname' = '******************.mysql.rds.aliyuncs.com',
    'port' = '3306',
    'username' = '***********',
    'password' = '***********',
    'database-name' = '***********',
    'table-name' = 'dimension_table'
);

这里,我们希望根据上一步中统计出的「每 15 秒商品销售量」信息,计算出每件商品的销售额。由于商品名称及商品价格数据存储在另一张维度表 dimension_table中,我们需要将结果视图和 dimension_table进行 JOIN 操作,并将「商品销售量」、「商品价格」相乘计算出「商品销售额」,并提取结果中的商品可读名称信息作为结果表。

需要确保 dimension_table中存在对应商品 ID 的条目。你可以在 RDS 中执行附件中的「示例数据.sql」来插入数据。

作业代码如下:

SELECT 
  record_timestamp, 
  good_name, 
  total_amount * good_price AS revenue 
FROM 
  (
    SELECT 
      good_id, 
      tumble_start(
        record_time, interval '15' seconds
      ) AS record_timestamp, 
      sum(amount) AS total_amount 
    FROM 
      source_table 
    GROUP BY 
      tumble (
        record_time, interval '15' seconds
      ), 
      good_id
  ) AS tumbled_table 
  LEFT JOIN dimension_table ON tumbled_table.good_id = dimension_table.good_id;

其中第 7 到 20 行和上一步骤的 SQL 语句一致。

执行上面的语句,并观察控制台中的统计数据:

5

  1. 最后,我们将这些实时的统计数据写回数据库,Flink SQL 也可以简单地实现这一点。首先我们需要创建一张用于连接汇表的 Flink 临时表,如下所示:
CREATE TEMPORARY TABLE sink_table (
    record_timestamp TIMESTAMP(3) NOT NULL PRIMARY KEY NOT ENFORCED,
    good_name VARCHAR(128),
    sell_amount INT
) WITH (
  'connector' = 'jdbc',
  'url' = 'jdbc:mysql://******************.mysql.rds.aliyuncs.com:3306/***********',
  'table-name' = 'sink_table',
  'username' = '***********',
  'password' = '***********',
  'scan.auto-commit' = 'true'
);

然后,只需要将上面的 SELECT 语句的输出结果 INSERT 到该表就可以了:

INSERT INTO sink_table 
SELECT 
  record_timestamp, 
  -- ... 和上面的语句一样

现在,点击控制台上的「上线」按钮,即可将我们编写的 Flink SQL 作业部署上线执行。您可以使用数据库客户端等软件观察汇表中是否写入了正确的数据。

阿里云实时计算控制台在使用「执行」功能调试时,不会写入任何数据到下游中。因此为了测试使用 SQL Connector 写入汇表,您必须使用「上线」功能。

6

您也可以进入 Flink UI 控制台观察流数据处理图。在这个简单的示例中,首先进行的是源表数据的捕获与窗口聚合;接着和维度表进行 JOIN 操作得到运算结果;最后将处理数据存入汇表。

想要了解更多商品销售额实时统计的实验信息吗?快来尝试一下吧!

7

入营立享权益


更多内容

img


活动推荐

阿里云基于 Apache Flink 构建的企业级产品-实时计算 Flink 版现开启活动:
0 元试用 实时计算 Flink 版(5000CU*小时,3 个月内)
了解活动详情:https://free.aliyun.com/?pipCode=sc

image.png

相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
8月前
|
SQL Oracle 关系型数据库
实时计算 Flink版产品使用合集之可以按日期统计数据并且能够撤回已落库数据吗
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
5月前
|
SQL 缓存 测试技术
实时计算 Flink版产品使用问题之如何实现滚动窗口统计用户不重复的总数
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
6月前
|
SQL 数据处理 API
实时计算 Flink版产品使用问题之一个记录多次变更,统计时会重复多次统计,该怎么办
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
8月前
|
消息中间件 存储 Kafka
实时计算 Flink版产品使用合集之如何实现统计同一用户最近一小时的总点击数
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
112 0
|
8月前
|
Java API Scala
【Flink】Flink Java 统计词频 开发
【1月更文挑战第26天】【Flink】Flink Java 统计词频 开发
|
大数据 双11 流计算
大数据Flink实时大屏统计
大数据Flink实时大屏统计
307 0
|
流计算
Flink应用简单案例-统计TopN
Flink应用简单案例-统计TopN
Flink应用简单案例-统计TopN
|
存储 缓存 流计算
Flink应用案例统计实现TopN的两种方式
在窗口中可以用一个 HashMap 来保存每个 url 的访问次数,只要遍历窗口中的所有数据,自然就能得到所有 url 的热门度。最后把 HashMap 转成一个列表 ArrayList,然后进行排序、取出前两名输出就可以了。
668 0
Flink应用案例统计实现TopN的两种方式
|
Apache 流计算 Python
Flink第一课!使用批处理,流处理,Socket的方式实现经典词频统计
Flink第一课!使用批处理,流处理,Socket的方式实现经典词频统计
386 0
Flink第一课!使用批处理,流处理,Socket的方式实现经典词频统计
|
消息中间件 Web App开发 监控
Flume+Kafka+Flink+Redis构建大数据实时处理系统:实时统计网站PV、UV展示
1.大数据处理的常用方法 大数据处理目前比较流行的是两种方法,一种是离线处理,一种是在线处理,基本处理架构如下: 在互联网应用中,不管是哪一种处理方式,其基本的数据来源都是日志数据,例如对于web应用来说,则可能是用户的访问日志、用户的点击日志等。
23644 15

相关产品

  • 实时计算 Flink版