Flink应用简单案例-统计TopN

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Flink应用简单案例-统计TopN

🍊诉求:网站中一个非常经典的例子,就是实时统计一段时间内的热门 url。例如,需要统计最近10 秒钟内最热门的两个 url 链接,并且每 5 秒钟更新一次。我们知道,这可以用一个滑动窗口来实现,而“热门度”一般可以直接用访问量来表示。于是就需要开滑动窗口收集 url 的访问数据,按照不同的 url 进行统计,而后汇总排序并最终输出前两名。这其实就是著名的“Top N”问题。

🍊很显然,简单的增量聚合可以得到 url 链接的访问量,但是后续的排序输出 Top N 就很难实现了。所以接下来我们用窗口处理函数进行实现。

pom文件

  <properties>
        <maven.compiler.source>8</maven.compiler.source>
        <maven.compiler.target>8</maven.compiler.target>
        <project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
        <flink.version>1.13.0</flink.version>
        <java.version>1.8</java.version>
        <scala.binary.version>2.12</scala.binary.version>
        <slf4j.version>1.7.30</slf4j.version>
    </properties>
    <dependencies>
        <!-- 引入 Flink 相关依赖-->
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-java</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-streaming-java_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.flink</groupId>
            <artifactId>flink-clients_${scala.binary.version}</artifactId>
            <version>${flink.version}</version>
        </dependency>
        <!-- 引入日志管理相关依赖-->
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-api</artifactId>
            <version>${slf4j.version}</version>
        </dependency>
        <dependency>
            <groupId>org.slf4j</groupId>
            <artifactId>slf4j-log4j12</artifactId>
            <version>${slf4j.version}</version>
        </dependency>
        <dependency>
            <groupId>org.apache.logging.log4j</groupId>
            <artifactId>log4j-to-slf4j</artifactId>
            <version>2.14.0</version>
        </dependency>
        <dependency>
            <groupId>org.projectlombok</groupId>
            <artifactId>lombok</artifactId>
            <version>1.18.22</version>
            <scope>compile</scope>
        </dependency>
        <dependency>
            <groupId>com.alibaba</groupId>
            <artifactId>fastjson</artifactId>
            <version>1.2.58</version>
        </dependency>
    </dependencies>

前置实体类

@Data
@NoArgsConstructor
@AllArgsConstructor
@Builder
public class UserViewCount {
    public String url;
    public Long count;
    public Long windowStart;
    public Long windowEnd;
    @Override
    public String toString() {
        return "UserViewCount{" +
                "url='" + url + '\'' +
                ", count=" + count +
                ", windowStart=" + new Timestamp(windowStart) +
                ", windowEnd=" + new Timestamp(windowEnd) +
                '}';
    }
}
import com.entity.UserEvent;
import org.apache.flink.streaming.api.functions.source.SourceFunction;
import java.util.Calendar;
import java.util.Random;
public class CustomSouce implements SourceFunction<UserEvent> {
    // 声明一个布尔变量,作为控制数据生成的标识位
    private Boolean running = true;
    @Override
    public void run(SourceContext<UserEvent> ctx) throws Exception {
        Random random = new Random(); // 在指定的数据集中随机选取数据
        String[] users = {"Mary", "Alice", "Bob", "Cary"};
        String[] urls = {"./home", "./cart", "./fav", "./prod?id=1",
                "./prod?id=2"};
        while (running) {
            ctx.collect(new UserEvent(
                    users[random.nextInt(users.length)],
                    urls[random.nextInt(urls.length)],
                    Calendar .getInstance().getTimeInMillis()
            ));
            // 隔 200 ms生成一个点击事件,方便观测
            Thread.sleep(200);
        }
    }
    @Override
    public void cancel() {
        running = false;
    }
}
import lombok.AllArgsConstructor;
import lombok.Data;
import lombok.NoArgsConstructor;
import lombok.ToString;
@Data
@NoArgsConstructor
@ToString
@AllArgsConstructor
public class UserEvent {
    private String userName;
    private String url;
    private Long timestemp;
}

方式一:使用 ProcessAllWindowFunction

public class TopN_TestProcessAllWindowFuntion {
    //取top 3的數據
    private static  Integer needTopCount = 3;
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.getConfig().setAutoWatermarkInterval(100);
        SingleOutputStreamOperator<UserEvent> stream = env.addSource(new CustomSouce())
                .assignTimestampsAndWatermarks(WatermarkStrategy.<UserEvent>forBoundedOutOfOrderness(Duration.ZERO)
                        .withTimestampAssigner(new SerializableTimestampAssigner<UserEvent>() {
                            @Override
                            public long extractTimestamp(UserEvent element, long recordTimestamp) {
                                return element.getTimestemp();
                            }
                        }));
        //按照用户姓名进行排名
        stream.map(data -> data.getUserName())
                .windowAll(SlidingEventTimeWindows.of(Time.seconds(10), Time.seconds(5)))
                .aggregate(new UserHashMapCountAgg(), new UserCountWindowResult())
                .print();
        env.execute();
    }
    public static class UserHashMapCountAgg implements AggregateFunction<String, HashMap<String, Long>, List<Tuple2<String, Long>>>{
        @Override
        public HashMap<String, Long> createAccumulator() {
            return new HashMap<>();
        }
        @Override
        public HashMap<String, Long> add(String value, HashMap<String, Long> accumulator) {
            if (accumulator.containsKey(value)){
                accumulator.put(value, accumulator.get(value) + 1L);
            }else{
                accumulator.put(value, 1L);
            }
            return accumulator;
        }
        @Override
        public List<Tuple2<String, Long>> getResult(HashMap<String, Long> accumulator) {
            List<Tuple2<String, Long>> resultList = new ArrayList<>();
            accumulator.forEach((key, count) -> {
                resultList.add(Tuple2.of(key, count));
            });
            //排序
            resultList.sort(new Comparator<Tuple2<String, Long>>() {
                @Override
                public int compare(Tuple2<String, Long> o1, Tuple2<String, Long> o2) {
                    return o2.f1.intValue() - o1.f1.intValue();
                }
            });
//            resultList.sort(Comparator.comparing((key_1, key_2) -> key_1.f1.compareTo(key_1.f1)));
//            Collections.sort(resultList, Comparator.comparing(key -> key.f1));
            return resultList;
        }
        @Override
        public HashMap<String, Long> merge(HashMap<String, Long> a, HashMap<String, Long> b) {
            //do nothing
            return null;
        }
    }
    //实现自定义窗口,包装用户输出信息
    public static class UserCountWindowResult extends ProcessAllWindowFunction<List<Tuple2<String, Long>>, String, TimeWindow>{
        @Override
        public void process(ProcessAllWindowFunction<List<Tuple2<String, Long>>, String, TimeWindow>.Context context, Iterable<List<Tuple2<String, Long>>> elements, Collector<String> out) throws Exception {
            StringBuilder stringBuilder = new StringBuilder();
            stringBuilder.append("-------------------------\n");
            stringBuilder.append("窗口结束时间:" + new Timestamp(context.window().getEnd()) + "\n");
            //取出top n数据
            List<Tuple2<String, Long>> needData = elements.iterator().next();
            if (CollectionUtils.isNotEmpty(needData)) {
                for (Integer i = 0; i < needTopCount; i++) {
                    Tuple2<String, Long> data = needData.get(i) == null ? null : needData.get(i);
                    if (null != data){
                        String resultStr = "No." + (i + 1) + " "
                                + "userName:" + data.f0 + " "
                                + "count:" + data.f1 + "\n";
                        stringBuilder.append(resultStr);
                    }
                }
                stringBuilder.append("-------------------------\n");
            }
            out.collect(stringBuilder.toString());
        }
    }
}

截取部分运行结果

73d8c9be8b2a4960a39693770de0ac9a.png

方式一:使用 KeyedProcessFunction

import com.entity.UserEvent;
import com.entity.UserViewCount;
import my.test.source.CustomSouce;
import org.apache.flink.api.common.eventtime.SerializableTimestampAssigner;
import org.apache.flink.api.common.eventtime.WatermarkStrategy;
import org.apache.flink.api.common.functions.AggregateFunction;
import org.apache.flink.api.common.state.ListState;
import org.apache.flink.api.common.state.ListStateDescriptor;
import org.apache.flink.api.common.typeinfo.Types;
import org.apache.flink.configuration.Configuration;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.api.functions.KeyedProcessFunction;
import org.apache.flink.streaming.api.functions.windowing.ProcessWindowFunction;
import org.apache.flink.streaming.api.windowing.assigners.SlidingEventTimeWindows;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.util.Collector;
import java.sql.Timestamp;
import java.util.ArrayList;
import java.util.Comparator;
public class TopN_KeyedProcessFunction {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.getConfig().setAutoWatermarkInterval(100);
        SingleOutputStreamOperator<UserEvent> eventStream = env.addSource(new CustomSouce())
                .assignTimestampsAndWatermarks(WatermarkStrategy.<UserEvent>forMonotonousTimestamps()
                .withTimestampAssigner(new SerializableTimestampAssigner<UserEvent>() {
                   @Override
                   public long extractTimestamp(UserEvent element, long
                           recordTimestamp) {
                       return element.getTimestemp();
                   }
               }));
        //按照访问url分区,求出每个 url 的访问量
        SingleOutputStreamOperator<UserViewCount> urlCountStream = eventStream.keyBy(data -> data.getUrl())
                        //滑动事件窗口:开窗(10s大小的窗口)、滑动距离5s
                        .window(SlidingEventTimeWindows.of(Time.seconds(10), Time.seconds(5)))
                        .aggregate(new NewUrlViewCountAgg(), new NewUrlViewCountResult());
        // 对结果中同一个窗口的统计数据,进行排序处理
        SingleOutputStreamOperator<String> result = urlCountStream.keyBy(data ->
                        data.windowEnd)
                .process(new TopN(3));
        result.print("result");
        env.execute();
    }
    //自定义增量聚合
    public static class NewUrlViewCountAgg implements AggregateFunction<UserEvent, Long, Long>{
        @Override
        public Long createAccumulator() {
            return 0L;
        }
        @Override
        public Long add(UserEvent value, Long accumulator) {
            return accumulator + 1L;
        }
        @Override
        public Long getResult(Long accumulator) {
            return accumulator;
        }
        @Override
        public Long merge(Long a, Long b) {
            return null;
        }
    }
    //自定义全窗口函数,只需要包装窗口信息
    public static class NewUrlViewCountResult extends ProcessWindowFunction<Long, UserViewCount, String, TimeWindow>{
        @Override
        public void process(String url, ProcessWindowFunction<Long, UserViewCount, String, TimeWindow>.Context context, Iterable<Long> elements, Collector<UserViewCount> out) throws Exception {
            // 结合窗口信息,包装输出内容
            long currentWindowStartTimeStemp = context.window().getStart();
            long currentWindowEndTimeStemp = context.window().getEnd();
            out.collect(new UserViewCount(url, elements.iterator().next(), currentWindowStartTimeStemp, currentWindowEndTimeStemp));
        }
    }
    // 自定义处理函数,排序取 top n
    public static class TopN extends KeyedProcessFunction<Long, UserViewCount, String>{
        // 将 n 作为属性
        private Integer n;
        // 定义一个列表状态
        private ListState<UserViewCount> urlViewCountListState;
        public TopN(Integer n) {
            this.n = n;
        }
        public TopN() {
            super();
        }
        @Override
        public void open(Configuration parameters) throws Exception {
            // 从环境中获取列表状态句柄
            urlViewCountListState = getRuntimeContext().getListState(
                    new ListStateDescriptor<UserViewCount>("url-view-count-list",
                            Types.POJO(UserViewCount.class)));
        }
        @Override
        public void processElement(UserViewCount value, KeyedProcessFunction<Long, UserViewCount, String>.Context ctx, Collector<String> out) throws Exception {
            // 将 count 数据添加到列表状态中,保存起来
            urlViewCountListState.add(value);
            // 注册 window end + 1ms 后的定时器,等待所有数据到齐开始排序
            ctx.timerService().registerEventTimeTimer(ctx.getCurrentKey() + 1);
        }
        @Override
        public void onTimer(long timestamp, KeyedProcessFunction<Long, UserViewCount, String>.OnTimerContext ctx, Collector<String> out) throws Exception {
            // 将数据从列表状态变量中取出,放入 ArrayList,方便排序
            ArrayList<UserViewCount> urlViewCountArrayList = new ArrayList<>();
            for (UserViewCount urlViewCount : urlViewCountListState.get()) {
                urlViewCountArrayList.add(urlViewCount);
            }
            // 清空状态,释放资源
            urlViewCountListState.clear();
            // 排序
            urlViewCountArrayList.sort(new Comparator<UserViewCount>() {
                @Override
                public int compare(UserViewCount o1, UserViewCount o2) {
                    return o2.count.intValue() - o1.count.intValue();
                }
            });
            // 提取前两名,构建输出结果
            StringBuilder result = new StringBuilder();
            result.append("========================================\n");
            result.append("窗口结束时间:" + new Timestamp(timestamp - 1) + "\n");
            for (int i = 0; i < this.n; i++) {
                UserViewCount userViewCount = urlViewCountArrayList.get(i);
                if (null == userViewCount){
                    break;
                }
                UserViewCount needUserView = userViewCount;
                String info = "No." + (i + 1) + " "
                        + "url:" + userViewCount.url + " "
                        + "浏览量:" + userViewCount.count + "\n";
                result.append(info);
            }
            result.append("========================================\n");
            out.collect(result.toString());
        }
    }
}

部分结果截图

73d8c9be8b2a4960a39693770de0ac9a.png


相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
2月前
|
分布式计算 数据处理 Apache
Spark和Flink的区别是什么?如何选择?都应用在哪些行业?
【10月更文挑战第10天】Spark和Flink的区别是什么?如何选择?都应用在哪些行业?
284 1
|
2月前
|
分布式计算 监控 大数据
大数据-131 - Flink CEP 案例:检测交易活跃用户、超时未交付
大数据-131 - Flink CEP 案例:检测交易活跃用户、超时未交付
84 0
|
2月前
|
消息中间件 关系型数据库 MySQL
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
大数据-117 - Flink DataStream Sink 案例:写出到MySQL、写出到Kafka
185 0
|
3天前
|
数据处理 数据安全/隐私保护 流计算
Flink 三种时间窗口、窗口处理函数使用及案例
Flink 是处理无界数据流的强大工具,提供了丰富的窗口机制。本文介绍了三种时间窗口(滚动窗口、滑动窗口和会话窗口)及其使用方法,包括时间窗口的概念、窗口处理函数的使用和实际案例。通过这些机制,可以灵活地对数据流进行分析和计算,满足不同的业务需求。
52 27
|
2月前
|
SQL 大数据 API
大数据-132 - Flink SQL 基本介绍 与 HelloWorld案例
大数据-132 - Flink SQL 基本介绍 与 HelloWorld案例
56 0
|
2月前
|
SQL 消息中间件 分布式计算
大数据-130 - Flink CEP 详解 - CEP开发流程 与 案例实践:恶意登录检测实现
大数据-130 - Flink CEP 详解 - CEP开发流程 与 案例实践:恶意登录检测实现
58 0
|
2月前
|
消息中间件 NoSQL Kafka
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
大数据-116 - Flink DataStream Sink 原理、概念、常见Sink类型 配置与使用 附带案例1:消费Kafka写到Redis
192 0
|
4月前
|
机器学习/深度学习 监控 Serverless
Serverless 应用的监控与调试问题之Flink在内部使用的未来规划,以及接下来有什么打算贡献社区的创新技术
Serverless 应用的监控与调试问题之Flink在内部使用的未来规划,以及接下来有什么打算贡献社区的创新技术
|
4月前
|
机器学习/深度学习 监控 大数据
Serverless 应用的监控与调试问题之Flink在整个开源大数据生态中应该如何定位,差异化该如何保持
Serverless 应用的监控与调试问题之Flink在整个开源大数据生态中应该如何定位,差异化该如何保持
|
4月前
|
存储 监控 Serverless
Serverless 应用的监控与调试问题之Pravega和Flink实现端到端的auto-scaling要如何操作
Serverless 应用的监控与调试问题之Pravega和Flink实现端到端的auto-scaling要如何操作
下一篇
DataWorks