Redis缓存与数据库双写一致性

本文涉及的产品
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: Redis缓存与数据库双写一致性

Redis缓存与数据库双写一致性

前言:

    首先,缓存由于其高并发和高性能的特性,已经在项目中被广泛使用。在读取缓存方面,大家没啥疑问,都是按照下图的流程来进行业务操作。![image](https://alidocs.oss-cn-zhangjiakou.aliyuncs.com/res/8ABmOoyzj2PznawZ/img/32fd1058-b172-4f5f-8492-41cb4f9138dd.jpg)

    但是在更新缓存方面,对于更新完数据库,是更新缓存呢,还是删除缓存呢?又或者是先删除缓存,再更新数据库呢?其实大家存在很大的争议。本文主要针对不同的更新进行总结,

文章结构由以下三个部分组成:

1、讲解缓存更新策略

2、对每种策略进行缺点分析

3、针对缺点给出改进方案


    先做一个说明,从理论上来说,给缓存设置过期时间,是保证最终一致性的解决方案。这种方案下,我们可以对存入缓存的数据设置过期时间,所有的写操作以数据库为准,对缓存操作只是尽最大努力即可。也就是说如果数据库写成功,缓存更新失败,那么只要到达过期时间,则后面的读请求自然会从数据库中读取新值然后回填缓存。因此,接下来讨论的思路不依赖于给缓存设置过期时间这个方案。在这里,我们讨论三种更新策略:
  1. 先更新数据库,再更新缓存

  2. 先删除缓存,再更新数据库

  3. 先更新数据库,再删除缓存

应该没人问我,为什么没有先更新缓存,再更新数据库这种策略。

一、先更新数据库,再更新缓存:

这套方案,大家是普遍反对的。主要有以下两个原因:

1、原因一:

从线程安全角度看,同时有请求A和请求B进行更新操作,那么会出现:

(1)线程A更新了数据库
(2)线程B更新了数据库
(3)线程B更新了缓存
(4)线程A更新了缓存

    这就出现请求A更新缓存应该比请求B更新缓存早才对,但是因为网络等原因,B却比A更早更新了缓存。这就导致了脏数据,因此不考虑

2、原因二:

从业务场景角度看,存在以下两个问题:

(1)如果是一个数据库写多读少的业务场景求,采用这种方案就会导致,数据压根还没读到,缓存就被频繁的更新,浪费性能。

(2)如果你写入数据库的值,并不是直接写入缓存的,而是要经过一系列复杂的计算再写入缓存。那么,每次写入数据库后,都再次计算写入缓存的值,无疑是浪费性能的。显然,删除缓存更为适合。

接下来讨论的就是争议最大的,先删缓存,再更新数据库。还是先更新数据库,再删缓存的问题

二、先删缓存,再更新数据库:

1、存在问题:

该方案会导致不一致的原因是:同时有一个请求A进行更新操作,另一个请求B进行查询操作。那么会出现如下情形:

(1)请求A进行写操作前,先删除缓存
(2)请求B查询发现缓存不存在
(3)请求B去数据库查询得到旧值
(4)请求B将旧值写入缓存
(5)请求A将新值写入数据库

上述情况就会导致不一致的情形出现。而且,如果不采用给缓存设置过期时间策略,该数据永远都是脏数据。

2、解决方案:延时双删策略:

public void write(String key,Object data){        redis.delKey(key);        db.updateData(data);        Thread.sleep(1000);        redis.delKey(key);    }

转化为中文描述就是:

(1)先淘汰缓存
(2)再写数据库
(3)休眠1秒,再次淘汰缓存

这么做的目的是将休眠时间内产生的缓存脏数据再次删除(这个休眠时间需要具体根据项目的业务逻辑耗时指定)

3、如果是 MySQL 的读写分离架构怎么办?

    在这种情况下,造成数据不一致的原因如下,还是两个请求,一个请求A进行更新操作,另一个请求B进行查询操作。

(1)请求A进行写操作,删除缓存(2)请求A将数据写入数据库了,(3)请求B查询缓存发现,缓存没有值(4)请求B去从库查询,这时,还没有完成主从同步,因此查询到的是旧值(5)请求B将旧值写入缓存(6)数据库完成主从同步,从库变为新值

上述情形,就是数据不一致的原因。还是使用双删延时策略。只是,睡眠时间修改为在主从同步的延时时间基础上,加几百ms

4、采用延时双删除策略,吞吐量降低怎么办?

    可以另起一个线程异步执行第二次删除操作,这样写的请求就不用沉睡一段时间后再返回了,从而加大吞吐量。但是如果**第二次删除的时候,删除失败怎么办呢?**如果第二次删除失败,就会出现如下情形。还是有两个请求,一个请求A进行更新操作,另一个请求B进行查询操作,为了方便,假设是单库:

(1)请求A进行写操作,删除缓存
(2)请求B查询发现缓存不存在
(3)请求B去数据库查询得到旧值
(4)请求B将旧值写入缓存
(5)请求A将新值写入数据库
(6)请求A试图去删除请求B写入对缓存值,结果失败了

    也就是说,如果第二次删除缓存失败,会再次出现缓存和数据库不一致的问题。如何解决呢?具体解决方案,且看对第(3)种更新策略的解析。

三、先更新数据库,再删缓存:

    首先,国外开发者提出了一个缓存更新策略名为《Cache-Aside pattern》,其中指出:

失效:应用程序先从cache取数据,没有得到,则从数据库中取数据,成功后,放到缓存中。
命中:应用程序从cache中取数据,取到后返回。
更新:先把数据存到数据库中,成功后,再让缓存失效。

    另外,知名社交网站facebook也在论文《Scaling Memcache at Facebook》中提出,他们用的也是先更新数据库,再删缓存的策略。

    但是这种策略并不是不存在并发问题,如果发生下述情况,还是会产生脏数据的。假设这会有两个请求,一个请求A做查询操作,一个请求B做更新操作,那么会有如下情形产生:

(1)缓存刚好失效
(2)请求A查询数据库,得一个旧值
(3)请求B将新值写入数据库
(4)请求B删除缓存
(5)请求A将查到的旧值写入缓存

    但是发生上述脏数据的情况有一个先天性条件,就是步骤(3)的写数据库操作比步骤(2)的读数据库操作耗时更短,才有可能使得步骤(4)先于步骤(5)。但是数据库的读操作的速度一般是远快于写操作的,因此步骤(3)耗时比步骤(2)更短,所以这一情形很难出现。

    如果一定要解决怎么办?首先,给缓存设有效时间是一种方案。其次,采用策略(2)里给出的异步延时删除策略,保证读请求完成以后,再进行删除操作。

   最后,缓存更新策略二和缓存更新策略三都存在一个问题,如果删缓存失败了,还是会出现数据不一致的情况。针对这种情况,只要提供一个保障的重试机制即可,这里给出两套方案:

方案一:image

流程如下所示:

(1)更新数据库数据;
(2)缓存因为种种问题删除失败
(3)将需要删除的key发送至消息队列
(4)自己消费消息,获得需要删除的key
(5)继续重试删除操作,直到成功

    然而,该方案有一个缺点,对业务线代码造成大量的侵入。于是有了方案二,在方案二中,启动一个订阅程序去订阅数据库的binlog,获得需要操作的数据。在应用程序中,另起一段程序,获得这个订阅程序传来的信息,进行删除缓存操作。

方案二:image

流程如下图所示:

(1)更新数据库数据
(2)数据库会将操作信息写入binlog日志当中
(3)订阅程序提取出所需要的数据以及key
(4)另起一段非业务代码,获得该信息
(5)尝试删除缓存操作,发现删除失败
(6)将这些信息发送至消息队列
(7)重新从消息队列中获得该数据,重试操作

备注说明:上述的订阅binlog程序在mysql中有现成的中间件叫canal,可以完成订阅binlog日志的功能。另外,重试机制,博主是采用的是消息队列的方式。如果对一致性要求不是很高,直接在程序中另起一个线程,每隔一段时间去重试即可,这些大家可以灵活自由发挥,只是提供一个思路。

相关文章
|
2月前
|
存储 NoSQL Redis
阿里云高性能数据库Tair(兼容 Redis)收费价格,稳定可靠成本低
阿里云高性能云数据库Tair兼容Redis,提供Redis开源版和Tair企业版,支持多种存储介质与灵活扩展,适用于高并发场景。Tair具备亚毫秒级稳定延迟,保障业务连续性。价格方面,Redis开源版年费从72元起,Tair企业版年费从1224元起,具体费用根据配置不同有所变化。
|
7月前
|
存储 NoSQL 数据库
Redis 逻辑数据库与集群模式详解
Redis 是高性能内存键值数据库,广泛用于缓存与实时数据处理。本文深入解析 Redis 逻辑数据库与集群模式:逻辑数据库提供16个独立存储空间,适合小规模隔离;集群模式通过分布式架构支持高并发和大数据量,但仅支持 database 0。文章对比两者特性,讲解配置与实践注意事项,并探讨持久化及性能优化策略,助你根据需求选择最佳方案。
277 5
|
8月前
|
NoSQL Java Redis
Redis Pipeline介绍 ---- 提高操作Redis数据库的执行效率。
Redis Pipeline是提高Redis执行效率的重要技术,通过批量发送命令,显著减少了网络往返次数,提高了系统的吞吐量和性能。在实际应用中,合理使用Pipeline可以有效优化Redis的性能,特别是在需要批量操作的场景下。本文通过Python和Java的示例代码展示了如何实现和使用Redis Pipeline,为开发者提供了具体的操作指南。
400 16
|
8月前
|
消息中间件 缓存 NoSQL
缓存与数据库的一致性方案,Redis与Mysql一致性方案,大厂P8的终极方案(图解+秒懂+史上最全)
缓存与数据库的一致性方案,Redis与Mysql一致性方案,大厂P8的终极方案(图解+秒懂+史上最全)
|
6月前
|
缓存 NoSQL 关系型数据库
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
美团面试:MySQL有1000w数据,redis只存20w的数据,如何做 缓存 设计?
|
1月前
|
缓存 负载均衡 监控
135_负载均衡:Redis缓存 - 提高缓存命中率的配置与最佳实践
在现代大型语言模型(LLM)部署架构中,缓存系统扮演着至关重要的角色。随着LLM应用规模的不断扩大和用户需求的持续增长,如何构建高效、可靠的缓存架构成为系统性能优化的核心挑战。Redis作为业界领先的内存数据库,因其高性能、丰富的数据结构和灵活的配置选项,已成为LLM部署中首选的缓存解决方案。
|
2月前
|
存储 缓存 NoSQL
Redis专题-实战篇二-商户查询缓存
本文介绍了缓存的基本概念、应用场景及实现方式,涵盖Redis缓存设计、缓存更新策略、缓存穿透问题及其解决方案。重点讲解了缓存空对象与布隆过滤器的使用,并通过代码示例演示了商铺查询的缓存优化实践。
189 1
Redis专题-实战篇二-商户查询缓存
|
1月前
|
缓存 运维 监控
Redis 7.0 高性能缓存架构设计与优化
🌟蒋星熠Jaxonic,技术宇宙中的星际旅人。深耕Redis 7.0高性能缓存架构,探索函数化编程、多层缓存、集群优化与分片消息系统,用代码在二进制星河中谱写极客诗篇。
|
6月前
|
缓存 NoSQL Java
Redis+Caffeine构建高性能二级缓存
大家好,我是摘星。今天为大家带来的是Redis+Caffeine构建高性能二级缓存,废话不多说直接开始~
953 0
|
2月前
|
缓存 NoSQL 关系型数据库
Redis缓存和分布式锁
Redis 是一种高性能的键值存储系统,广泛用于缓存、消息队列和内存数据库。其典型应用包括缓解关系型数据库压力,通过缓存热点数据提高查询效率,支持高并发访问。此外,Redis 还可用于实现分布式锁,解决分布式系统中的资源竞争问题。文章还探讨了缓存的更新策略、缓存穿透与雪崩的解决方案,以及 Redlock 算法等关键技术。

热门文章

最新文章