【MySQL数据库原理 零】MySQL数据库原理看这一篇就够了(三)

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS PostgreSQL,集群系列 2核4GB
简介: 【MySQL数据库原理 零】MySQL数据库原理看这一篇就够了(三)

二叉搜索平衡树

为了保证插入效率,使用了平衡树,平衡二叉树(Self-balancing binary search tree)又被称为AVL树(有别于AVL算法),且具有以下性质:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树

还是上面根据身份证号查名字的例子,如果我们用二叉搜索树来实现的话,示意图如下所示

这样如果你要查 ID_card_n2 的话,按照图中的搜索顺序就是按照 UserA -> UserC -> UserF -> User2 这个路径得到。这个时间复杂度是 O(log(N)),当然为了维持 O(log(N)) 的查询复杂度,你就需要保持这棵树是平衡二叉树。为了做这个保证,更新的时间复杂度也是 O(log(N))

多叉搜索树

树可以有二叉,也可以有多叉。多叉树就是每个节点有多个儿子,儿子之间的大小保证从左到右递增。二叉树是搜索效率最高的,但是实际上大多数的数据库存储却并不使用二叉树。其原因是,索引不止存在内存中,还要写到磁盘上,因为二叉树树高过高,每次查询都需要访问过多节点,即访问数据块过多,而从磁盘随机读取数据块过于耗时

为了让一个查询尽量少地读磁盘,就必须让查询过程访问尽量少的数据块,那么,我们就不应该使用二叉树,而是要使用N叉树。

以 InnoDB 的一个整数字段索引为例,这个 N 差不多是 1200。这棵树高是 4 的时候,就可以存 1200 的 3 次方个值,这已经 17 亿了。考虑到树根的数据块总是在内存中的,一个 10 亿行的表上一个整数字段的索引,查找一个值最多只需要访问 3 次磁盘。其实,树的第二层也有很大概率在内存中,那么访问磁盘的平均次数就更少了

InnoDB索引模型

在 InnoDB 中,表都是根据主键顺序以索引的形式存放的,这种存储方式的表称为索引组织表。又因为前面我们提到的,InnoDB 使用了 B+ 树索引模型,所以数据都是存储在 B+ 树中的,每一个索引在 InnoDB 里面对应一棵 B+ 树

B+树结构

一个m阶的B+树具有如下几个特征:

  1. 有k个子树的中间节点包含有k个元素(B树中是k-1个元素),每个元素不保存数据,只用来索引,所有数据都保存在叶子节点
  2. 所有的叶子结点中包含了全部元素的信息,及指向含这些元素记录的指针,且叶子结点本身依关键字的大小自小而大顺序链接
  3. 所有的中间节点元素都同时存在于子节点,在子节点元素中是最大(或最小)元素

下图为一个B+树的结构:

在等值查询的时候:

区间查询:

B+树的优势显而易见:

  1. 单一节点存储更多的元素,使得查询的IO次数更少。
  2. 所有查询都要查找到叶子节点,查询性能稳定。
  3. 所有叶子节点形成有序链表,便于范围查询。

需要注意数据库的聚集索引(Clustered Index)中,叶子节点直接包含卫星数据。在非聚集索引(NonClustered Index)中,叶子节点带有指向卫星数据的指针,这部分再下文中讲到

B+Tree适用场景

我们这里比较下Hash索引和B+树的区别,有序数组暂不讨论。由于 Hash 索引比较的是进行 Hash 运算之后的 Hash 值,所以它只能用于等值的过滤,不能用于基于范围的过滤,因为经过相应的 Hash 算法处理之后的 Hash 值的大小关系,并不能保证和Hash运算前完全一样。 Hash 索引不能够用于诸如 < 等用于查找一个范围值的比较运算符,Hash 索引仅仅能满足”=”,”IN”和”<=>”(等价于)查询

  • Hash 索引不能够用于范围查询,B+Tree可以进行范围查询
  • Hash 索引无法被用来数据的排序操作,B+Tree可以进行排序操作,由于 Hash 索引中存放的是经过 Hash 计算之后的 Hash 值,而且Hash值的大小关系并不一定和 Hash 运算前的键值完全一样,所以数据库无法利用索引的数据来避免任何排序运算;优化器不能够使用 hash 索引来加速 ORDER BY 操作。这种类型的索引不能够用于按照顺序查找下一个条目。
  • Hash 索引不能利用部分索引键查询。B+Tree可以,对于组合索引,Hash 索引在计算 Hash 值的时候是组合索引键合并后再一起计算 Hash 值,而不是单独计算 Hash 值,所以通过组合索引的前面一个或几个索引键进行查询的时候,Hash 索引也无法被利用。查找某行记录必须进行全键匹配。而 B+Tree 索引,任何该键的左前缀都可用以查找记录。
  • Hash 索引在任何时候都不能避免表扫描。前面已经知道,Hash 索引是将索引键通过 Hash 运算之后,将 Hash运算结果的 Hash 值和所对应的行指针信息存放于一个 Hash 表中,由于不同索引键存在相同 Hash 值,所以即使取满足某个 Hash 键值的数据的记录条数,也无法从 Hash 索引中直接完成查询,还是要通过访问表中的实际数据进行相应的比较,并得到相应的结果。
  • Hash 索引遇到大量Hash值相等的情况后性能并不一定就会比B+Tree索引高,对于选择性比较低的索引键,如果创建 Hash 索引,那么将会存在大量记录指针信息存于同一个 Hash 值相关联。这样要定位某一条记录时就会非常麻烦,会浪费多次表数据的访问,而造成整体性能低下。

总而言之,还是B+树的应用场景较多

主键与非主键索引

假设,我们有一个主键列为 ID 的表,表中有字段 k,并且在 k 上有索引

mysql> create table T(
    id int primary key, 
    k int not null, 
    name varchar(16),
    index (k))engine=InnoDB;

表中 R1~R5 的 (ID,k) 值分别为 (100,1)、(200,2)、(300,3)、(500,5) 和 (600,6),两棵树的示例示意图如下

可以看到表里创建了两个索引,一个是默认给主键创建的,一个是我们手动给k创建的:

  • 主键索引的叶子节点存的是整行数据。在 InnoDB 里,主键索引也被称为聚簇索引(clustered index)
  • 非主键索引的叶子节点内容是主键的值。在 InnoDB 里,非主键索引也被称为二级索引(非聚簇索引)(secondary index)

主键索引: key:主键的值,value:整行数据。 普通列索引: key:索引列的值, value:主键的值。

根据上面的索引结构说明,我们来讨论一个问题:基于主键索引和普通索引的查询有什么区别?

  • 如果语句是 select * from T where ID=500,即主键查询方式,则只需要搜索 ID 这棵 B+ 树;
  • 如果语句是 select * from T where k=5,即普通索引查询方式,则需要先搜索 k 索引树,得到 ID 的值为 500,再到 ID 索引树搜索一次。这个过程称为回表

也就是说,基于非主键索引的查询需要多扫描一棵索引树。因此,我们在应用中应该尽量使用主键查询

索引维护

B+ 树为了维护索引有序性,在插入新值的时候需要做必要的维护。以上图为例

  • 如果插入新的行 ID 值为 700,则只需要在 R5 的记录后面插入一个新记录。
  • 如果新插入的 ID 值为 400,就相对麻烦了,需要逻辑上挪动后面的数据空出位置。

以上情况维护起来就比较麻烦了。

页分裂和页合并

而更糟的情况是,如果 R5 所在的数据页已经满了,根据 B+ 树的算法,这时候需要申请一个新的数据页,然后挪动部分数据过去。这个过程称为页分裂。在这种情况下,性能自然会受影响。除了性能外,页分裂操作还影响数据页的利用率。原本放在一个页的数据,现在分到两个页中,整体空间利用率降低大约 50%。当然有分裂就有合并。当相邻两个页由于删除了数据,利用率很低之后,会将数据页做合并。页合并的过程,可以认为是分裂过程的逆过程

自增主键

自增主键是指自增列上定义的主键,在建表语句中一般是这么定义的: NOT NULL PRIMARY KEY AUTO_INCREMENT。插入新记录的时候可以不指定 ID 的值,系统会获取当前 ID 最大值加 1 作为下一条记录的 ID 值

  • 自增主键的插入数据模式,正符合了我们前面提到的递增插入的场景。每次插入一条新记录,都是追加操作,都不涉及到挪动其他记录,也不会触发叶子节点的分裂
  • 业务逻辑的字段做主键,则往往不容易保证有序插入,这样写数据成本相对较高

除了考虑性能外,我们还可以从存储空间的角度来看。假设你的表中确实有一个唯一字段,比如字符串类型的身份证号,那应该用身份证号做主键,还是用自增字段做主键呢?由于每个非主键索引的叶子节点上都是主键的值。如果用身份证号做主键,那么每个二级索引的叶子节点占用约 20 个字节,而如果用整型做主键,则只要 4 个字节,如果是长整型(bigint)则是 8 个字节。显然,主键长度越小,普通索引的叶子节点就越小,普通索引占用的空间也就越小。所以,从性能和存储空间方面考量,自增主键往往是更合理的选择

业务主键

有没有什么场景适合用业务字段直接做主键的呢?还是有的。比如,有些业务的场景需求是这样的:只有一个索引;该索引必须是唯一索引。这就是典型的 KV 场景。由于没有其他索引,所以也就不用考虑其他索引的叶子节点大小的问题。这时候我们就要优先考虑上一段提到的“尽量使用主键查询”原则,直接将这个索引设置为主键,可以避免每次查询需要搜索两棵树

MyISAM和InnoDB的索引实现对比

上文我们了解了InnoDB的索引结构。MySQL的BTree索引使⽤的是B树中的B+Tree,但对于主要的两种存储引擎的实现⽅式是不同的。

  • MyISAM: B+Tree叶节点的data域存放的是数据记录的地址。在索引检索的时候,⾸先按照B+Tree搜索算法搜索索引,如果指定的Key存在,则取出其 data 域的值,然后以 data 域的值为地址读取相应的数据记录。⾮聚簇索引
  • InnoDB: 其数据⽂件本身就是索引⽂件。相⽐MyISAM,索引⽂件和数据⽂件是分离的,其表数据⽂件本身就是按B+Tree组织的⼀个索引结构,树的叶节点data域保存了完整的数据记录。这个索引的key是数据表的主键,因此InnoDB表数据⽂件本身就是主索引。聚簇索引。⽽其余的索引都作为辅助索引,辅助索引的data域存储相应记录主键的值⽽不是地址,这也是MyISAM不同的地⽅。在根据主索引搜索时,直接找到key所在的节点即可取出数据;在根据辅助索引查找时,则需要先取出主键的值,再⾛⼀遍主索引。

在设计表的时候,不建议使⽤过⻓的字段作为主键,也不建议使⽤⾮单调的字段作为主键,这样会造成主索引频繁分裂

索引策略

理解了InnoDB索引实现的方式之后,我们再来看看索引在具体的使用过程中有哪些执行策略和优化方式。

我们来看下select * from T where k between 3 and 5SQL 查询语句的执行流程,注意取3和取5因为叶子节点单链表链接,所以从根节点搜索行为仅执行一次。

  1. 在 k 索引树上找到 k=3 的记录,取得 ID = 300;再到 ID 索引树查到 ID=300 对应的 R3;回表
  2. 在 k 索引树取下一个值 k=5,取得 ID=500;再回到 ID 索引树查到 ID=500 对应的 R4;回表
  3. 在 k 索引树取下一个值 k=6,不满足条件,循环结束。

在这个过程中,回到主键索引树搜索的过程,我们称为回表。可以看到,这个查询过程读了 k 索引树的 3 条记录,回表了两次。在这个例子中,由于查询结果所需要的数据只在主键索引上有,所以不得不回表。那么,有没有可能经过索引优化,避免回表过程呢?

覆盖索引

如果执行的语句是 select ID from T where k between 3 and 5,这时只需要查 ID 的值,而 ID 的值已经在 k 索引树上了,因此可以直接提供查询结果,不需要回表。也就是说,在这个查询里面,索引 k 已经覆盖了我们的查询需求,我们称为覆盖索引

需要注意的是,在引擎内部使用覆盖索引在索引 k 上其实读了三个记录,ID3、ID4、ID5(对应的索引 k 上的记录项),但是对于 MySQL 的 Server 层来说,它就是找引擎拿到了两条记录,因此 MySQL 认为扫描行数是 2。

由于覆盖索引可以减少树的搜索次数,显著提升查询性能,所以使用覆盖索引是一个常用的性能优化手段,基于上面覆盖索引的说明,我们来讨论一个问题:在一个市民信息表上,是否有必要将身份证号和名字建立联合索引

CREATE TABLE `tuser` (
  `id` int(11) NOT NULL,
  `id_card` varchar(32) DEFAULT NULL,
  `name` varchar(32) DEFAULT NULL,
  `age` int(11) DEFAULT NULL,
  `ismale` tinyint(1) DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `id_card` (`id_card`),
  KEY `name_age` (`name`,`age`),
  KEY `id_card_name` (`id_card`,`name`)   //联合索引
) ENGINE=InnoDB

我们知道,身份证号是市民的唯一标识。也就是说,如果有根据身份证号查询市民信息的需求,我们只要在身份证号字段上建立索引就够了。而再建立一个(身份证号、姓名)的联合索引,是不是浪费空间?

如果现在有一个高频请求,要根据市民的身份证号查询他的姓名,这个联合索引就有意义了。例如这个sql:select name from T where id_card =500

它可以在这个高频请求上用到覆盖索引,不再需要回表查整行记录,减少语句的执行时间。给id_card 和 name建立联合索引后,name的值也会被保存在id_card索引树的节点上,这样根据给定id_card的值找到的对应行时,就可以直接获取到name了,而不需要拿着对应的主键再进行回表操作

需要注意,覆盖索引不能只覆盖要查询的列,同时必须将WHERE后面的查询条件的列都覆盖,也就是这个联合索引要包含查询条件和返回的查询列。

相关实践学习
如何快速连接云数据库RDS MySQL
本场景介绍如何通过阿里云数据管理服务DMS快速连接云数据库RDS MySQL,然后进行数据表的CRUD操作。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
9天前
|
关系型数据库 MySQL Linux
MySQL原理简介—6.简单的生产优化案例
本文介绍了数据库和存储系统的几个主题: 1. **MySQL日志的顺序写和数据文件的随机读指标**:解释了磁盘随机读和顺序写的原理及对数据库性能的影响。 2. **Linux存储系统软件层原理及IO调度优化原理**:解析了Linux存储系统的分层架构,包括VFS、Page Cache、IO调度等,并推荐使用deadline算法优化IO调度。 3. **数据库服务器使用的RAID存储架构**:介绍了RAID技术的基本概念及其如何通过多磁盘阵列提高存储容量和数据冗余性。 4. **数据库Too many connections故障定位**:分析了MySQL连接数限制问题的原因及解决方法。
|
7天前
|
SQL 存储 关系型数据库
MySQL原理简介—9.MySQL索引原理
本文详细介绍了MySQL索引的设计与使用原则,涵盖磁盘数据页的存储结构、页分裂机制、主键索引设计及查询过程、聚簇索引和二级索引的原理、B+树索引的维护、联合索引的使用规则、SQL排序和分组时如何利用索引、回表查询对性能的影响以及索引覆盖的概念。此外还讨论了索引设计的案例,包括如何处理where筛选和order by排序之间的冲突、低基数字段的处理方式、范围查询字段的位置安排,以及通过辅助索引来优化特定查询场景。总结了设计索引的原则,如尽量包含where、order by、group by中的字段,选择离散度高的字段作为索引,限制索引数量,并针对频繁查询的低基数字段进行特殊处理等。
MySQL原理简介—9.MySQL索引原理
|
5天前
|
存储 关系型数据库 MySQL
MySQL底层概述—6.索引原理
本文详细回顾了:索引原理、二叉查找树、平衡二叉树(AVL树)、红黑树、B-Tree、B+Tree、Hash索引、聚簇索引与非聚簇索引。
MySQL底层概述—6.索引原理
|
7天前
|
SQL 监控 关系型数据库
MySQL原理简介—12.MySQL主从同步
本文介绍了四种为MySQL搭建主从复制架构的方法:异步复制、半同步复制、GTID复制和并行复制。异步复制通过配置主库和从库实现简单的主从架构,但存在数据丢失风险;半同步复制确保日志复制到从库后再提交事务,提高了数据安全性;GTID复制简化了配置过程,增强了复制的可靠性和管理性;并行复制通过多线程技术降低主从同步延迟,保证数据一致性。此外,还讨论了如何使用工具监控主从延迟及应对策略,如强制读主库以确保即时读取最新数据。
MySQL原理简介—12.MySQL主从同步
|
9天前
|
SQL 缓存 关系型数据库
MySQL原理简介—7.redo日志的底层原理
本文介绍了MySQL中redo日志和undo日志的主要内容: 1. redo日志的意义:确保事务提交后数据不丢失,通过记录修改操作并在系统宕机后重做日志恢复数据。 2. redo日志文件构成:记录表空间号、数据页号、偏移量及修改内容。 3. redo日志写入机制:redo日志先写入Redo Log Buffer,再批量刷入磁盘文件,减少随机写以提高性能。 4. Redo Log Buffer解析:描述Redo Log Buffer的内存结构及刷盘时机,如事务提交、Buffer过半或后台线程定时刷新。 5. undo日志原理:用于事务回滚,记录插入、删除和更新前的数据状态,确保事务可完整回滚。
|
8天前
|
SQL 缓存 关系型数据库
MySQL原理简介—8.MySQL并发事务处理
这段内容深入探讨了SQL语句执行原理、事务并发问题、MySQL事务隔离级别及其实现机制、锁机制以及数据库性能优化等多个方面。
|
7天前
|
SQL 关系型数据库 MySQL
MySQL原理简介—11.优化案例介绍
本文介绍了四个SQL性能优化案例,涵盖不同场景下的问题分析与解决方案: 1. 禁止或改写SQL避免自动半连接优化。 2. 指定索引避免按聚簇索引全表扫描大表。 3. 按聚簇索引扫描小表减少回表次数。 4. 避免产生长事务长时间执行。
|
7天前
|
SQL 存储 关系型数据库
MySQL原理简介—10.SQL语句和执行计划
本文介绍了MySQL执行计划的相关概念及其优化方法。首先解释了什么是执行计划,它是SQL语句在查询时如何检索、筛选和排序数据的过程。接着详细描述了执行计划中常见的访问类型,如const、ref、range、index和all等,并分析了它们的性能特点。文中还探讨了多表关联查询的原理及优化策略,包括驱动表和被驱动表的选择。此外,文章讨论了全表扫描和索引的成本计算方法,以及MySQL如何通过成本估算选择最优执行计划。最后,介绍了explain命令的各个参数含义,帮助理解查询优化器的工作机制。通过这些内容,读者可以更好地理解和优化SQL查询性能。
|
10天前
|
存储 缓存 关系型数据库
MySQL进阶突击系列(08)年少不知BufferPool核心原理 | 大哥送来三条大金链子LRU、Flush、Free
本文深入探讨了MySQL中InnoDB存储引擎的buffer pool机制,包括其内存管理、数据页加载与淘汰策略。Buffer pool作为高并发读写的缓存池,默认大小为128MB,通过free链表、flush链表和LRU链表管理数据页的存取与淘汰。其中,改进型LRU链表采用冷热分离设计,确保预读机制不会影响缓存公平性。文章还介绍了缓存数据页的刷盘机制及参数配置,帮助读者理解buffer pool的运行原理,优化MySQL性能。
|
10天前
|
存储 缓存 关系型数据库
MySQL原理简介—5.存储模型和数据读写机制
本文介绍了MySQL中InnoDB存储引擎的物理存储结构和读写机制。主要内容包括: 1. 为什么不能直接更新磁盘上的数据 2. 数据页的概念 3. 一行数据的存储 4. 数据头的内容 5. 行溢出和溢出页 6. 数据页的物理结构 7. 表空间的物理结构 8. InnoDB存储模型及读写机制总结 这些机制共同确保了InnoDB在高并发场景下的高效运行和数据一致性。

推荐镜像

更多