带你读《2022技术人的百宝黑皮书》——MNN 2.0 发布 ——移动端推理引擎到通用深度学习引擎(3)

简介: 带你读《2022技术人的百宝黑皮书》——MNN 2.0 发布 ——移动端推理引擎到通用深度学习引擎(3)

带你读《2022技术人的百宝黑皮书》——MNN 2.0 发布 ——移动端推理引擎到通用深度学习引擎(2) https://developer.aliyun.com/article/1248037?groupCode=taobaotech



技术挑战


image.png

MNN 面临的技术挑战,如上图所示,主要是两个矛盾


1.AI应用需要的复杂功能支持与受限制的程序体积之间的矛盾


AI 模型本身包含多种算子,并在不断演进,如 ONNX 的算子数目前有 160 个左右,Tensorflow 接近 2000 个,MNN 需要以更精简的代码去实现 AI 模型所需要的这些算子。


AI 应用除去模型推理之外,也包含数据前后处理所需要的数值计算与图像处理模块,算法工程师常用的 Numpy 与 OpenCV 库在移动端上往往因为体积占用过大而不能使用,对应功能也需要 MNN 支持。


2.AI应用需要的强大算力支撑与碎片化的计算资源之间的矛盾


AI 模型往往计算量很大,需要 MNN 对设备上的计算资源深入适配,持续做性能优化,以充分发挥设备的算力。


计算资源包括 CPU , GPU , DSP 和 NPU ,它们本身编程方式是碎片化的,需要 MNN 逐个适配,开发成本高,也会使程序体积膨胀。


架构设计


为了应对性能与功能层面的挑战,MNN 设计了预推理与表达式两个核心模块:


1. 预推理模块可以降低计算资源的差异性,在任意的计算资源上寻找到较优的计算方案。


2. 表达式模块可以抹平不同训练框架的算子差异,并将模型训练、图像处理、数值计算等功能转换为推理所需要的张量计算图,从而可用 MNN 进行推理。



带你读《2022技术人的百宝黑皮书》——MNN 2.0 发布 ——移动端推理引擎到通用深度学习引擎(4) https://developer.aliyun.com/article/1248035?groupCode=taobaotech

相关文章
|
2天前
|
机器学习/深度学习 存储 人工智能
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
MNN 是阿里巴巴开源的轻量级深度学习推理框架,支持多种设备和主流模型格式,具备高性能和易用性,适用于移动端、服务器和嵌入式设备。
38 18
MNN:阿里开源的轻量级深度学习推理框架,支持在移动端等多种终端上运行,兼容主流的模型格式
|
28天前
|
机器学习/深度学习 传感器 边缘计算
基于深度学习的图像识别技术在自动驾驶中的应用####
随着人工智能技术的飞速发展,深度学习已成为推动自动驾驶技术突破的关键力量之一。本文深入探讨了深度学习算法,特别是卷积神经网络(CNN)在图像识别领域的创新应用,以及这些技术如何被集成到自动驾驶汽车的视觉系统中,实现对复杂道路环境的实时感知与理解,从而提升驾驶的安全性和效率。通过分析当前技术的最前沿进展、面临的挑战及未来趋势,本文旨在为读者提供一个全面而深入的视角,理解深度学习如何塑造自动驾驶的未来。 ####
98 1
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习中的图像识别技术及其应用
在这篇文章中,我们将探讨深度学习在图像识别领域的应用。通过简单易懂的语言和实际代码示例,我们将深入了解如何利用深度学习技术进行图像识别,并探讨其在不同领域的应用。无论你是初学者还是有一定基础的开发者,这篇文章都将为你提供有价值的信息。让我们一起探索深度学习的世界吧!
|
2月前
|
机器学习/深度学习 数据采集 传感器
基于深度学习的图像识别技术在自动驾驶中的应用研究####
本文旨在探讨深度学习技术,特别是卷积神经网络(CNN)在自动驾驶车辆图像识别领域的应用与进展。通过分析当前自动驾驶技术面临的挑战,详细介绍了深度学习模型如何提升环境感知能力,重点阐述了数据预处理、网络架构设计、训练策略及优化方法,并展望了未来发展趋势。 ####
116 6
|
1月前
|
机器学习/深度学习 算法框架/工具 网络架构
深度学习中的正则化技术及其对模型性能的影响
本文深入探讨了深度学习领域中正则化技术的重要性,通过分析L1、L2以及Dropout等常见正则化方法,揭示了它们如何帮助防止过拟合,提升模型的泛化能力。文章还讨论了正则化在不同类型的神经网络中的应用,并指出了选择合适正则化策略的关键因素。通过实例和代码片段,本文旨在为读者提供关于如何在实际问题中有效应用正则化技术的深刻见解。
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解人工智能中的深度学习技术及其最新进展
深入理解人工智能中的深度学习技术及其最新进展
168 12
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解人工智能中的深度学习技术及其最新进展
深入理解人工智能中的深度学习技术及其最新进展
|
2月前
|
机器学习/深度学习 监控 自动驾驶
基于深度学习的图像识别技术研究进展###
本文旨在探讨深度学习在图像识别领域的最新研究进展,重点分析卷积神经网络(CNN)的技术创新、优化策略及其在实际应用中的成效。通过综述当前主流算法结构、损失函数设计及数据集增强技巧,本文揭示了提升模型性能的关键因素,并展望了未来发展趋势。尽管未直接涉及传统摘要中的研究背景、方法、结果与结论等要素,但通过对关键技术点的深度剖析,为读者提供了对领域现状与前沿动态的全面理解。 ###
|
28天前
|
机器学习/深度学习 存储 人工智能
探索深度学习的奥秘:从理论到实践的技术感悟
本文深入探讨了深度学习技术的核心原理、发展历程以及在实际应用中的体验与挑战。不同于常规摘要,本文旨在通过作者个人的技术实践经历,为读者揭示深度学习领域的复杂性与魅力,同时提供一些实用的技术见解和解决策略。
30 0
|
1月前
|
机器学习/深度学习 传感器 自动驾驶
基于深度学习的图像识别技术及其在自动驾驶中的应用####
本文深入探讨了深度学习驱动下的图像识别技术,特别是在自动驾驶领域的革新应用。不同于传统摘要的概述方式,本节将直接以“深度学习”与“图像识别”的技术融合为起点,简述其在提升自动驾驶系统环境感知能力方面的核心作用,随后快速过渡到自动驾驶的具体应用场景,强调这一技术组合如何成为推动自动驾驶从实验室走向市场的关键力量。 ####
67 0