实践指南!16位资深行业者教你如何学习使用TensorFlow

简介: 本文整理quora论坛的主题——如何开始学习TensorFlow,16位资深行业者给出了相关的建议以及对应的学习资料链接。读者可以根据自身情况参考合适的建议,是一份不可多得的学习TensorFlow的指南。

首发地址:https://yq.aliyun.com/articles/71257


更多深度文章,请关注:https://yq.aliyun.com/cloud

如何开始学习使用TensorFlow?

相关回答:

Harrison Kinsley ——PythonProgramming.net的创始人

TensorFlow官方网站有相当多的文档和教程,但这些往往认为读者掌握了一些机器学习和人工智能知识。除了知道ML和AI,你也应该对Python编程语言非常熟练。因此开始学习如何使用TensorFlow前,首先学习更多的Python语言,而不是与机器学习直接相关的任何东西。

1、假设熟练Python,但不会机器学习,那么可以查看这个机器学习实践w / Python教程,其中涵盖与机器学习相关的概念、算法、理论应用程序等;

2、如果已经掌握了Python和机器学习的基础知识,但还不知道Deep Learning / TensorFlow,那么可以从神经网络介绍部分开始 。

3、如果已经知道神经网络/深度学习,那么可以从安装TensorFlow教程开始,或者可以从TensorFlow基础教程开始,这将直接导致实际建模一个深层神经网络

Parag K Mital ——Kadenze Inc.机器智能总监

刚刚推出了一个关于Tensorflow的新课程:使用TensorFlow |创建深度学习应用程序

Kadenze与其他课程不同,这是一个以应用为导向的课程,通过鼓励探索创造性思维和深层神经网络的创造性应用,教你Tensorflow的基础知识以及最先进的算法强烈鼓励尝试这门课程。这是唯一全面的在线课程,将教会你如何使用Tensorflow和开发您的创造潜力,了解如何应用这些技术创建神经网络。

课程资料:

本课程将介绍深度学习:构建人工智能算法的最先进的方法。涵盖深度学习的基本结构、意义,原理并开发必要的代码搭建各种算法,如深卷积网络,变分自动编码器,生成对抗网络和循环神经网络。本课程的主要重点是了解如何构建这些算法的必要结构以及如何应用它们来探索创意应用程序。

计划表

学期1:Tensorflow简介

介绍数据与机器和深度学习算法的重要性,创建数据集的基础知识,如何预处理数据集,然后跳转到Tensorflow。此外将学习Tensorflow的基本结构,并了解如何使用它来过滤图像。

学期2:训练一个网络W / Tensorflow

将看到神经网络如何工作,网络是如何“训练”。然后将构建自己的第一个神经网络,并将其用于训练神经网络如何绘制图像的应用程序。

学期3:无监督和监督学习

探索能够编码大型数据集的深层神经网络,并了解如何使用此编码来探索数据集的“潜在”维度或生成全新内容。还将学习另一种类型的执行辨别学习的模型,并了解如何使用它来预测图像的标签。

学期4:可视化和幻化表示

指导执行一些真正有趣的可视化,包括可以产生无限生成分形的“深度梦想”或者“风格网络”,它允许我们将一个图像的内容和另一个图像的风格结合起来自动生成艺术美学。

学期5:生成模型

最后提供了一些未来生成建模方向的预测,包括一些现有技术模型,例如“生成式对抗网络”,以及其在“变分自动编码器”内的实现等内容

Antonio Cangiano ——IBM软件开发和技术推广

大数据大学刚刚推出了一个免费的深层学习与TensorFlow课程。显然还有其他有效的资源可用,但建议你一下本课程。同样查看目录中的其他数据科学和机器学习课程。课程是完全免费的,并且许多都有完成证书和IBM支持的开放徽章

Ian Dewancker  ——SigOpt研究工程师

最好的学习方式可能是通过学习和实验一个工作过的例子。在SigOpt有一个工作通过TensorFlow示例调整一个卷积神经网络,该工程在github页面链接sigopt / sigopt-examples

下面简短的视频教程讲授如何创建一个能够运行TensorFlow代码AWS环境。该视频还概述了并行探索CNN配置的简单策略。

https://youtu.be/CGI_RKVnDpE

Ish Girwan ——在印度管理学院学习

作为初学者,可以使用以下资源:

学习TensorFlow

aymericdamien / TensorFlow-Examples

nlintz / TensorFlow-Tutorials

Google TensorFlow教程

机器智能的开源软件库

Kuntal Mukherjee ——在Wipro Technologies工作

如果你是初学者,建议按照以下步骤学习:

1 首先快速学习Python

2 学习AI和机器学习课程可以尝试MIT OCW。

3 从TensorFlow网站教程开始。如果你已经在这个领域经历过,那么可以去步骤(3)开始学习更高级教程。

Rodolfo Bonnin ——建筑机器学习项目与Tensorflor 作家

最简单的方法之一是查看和修改一些代码示例与额外的注释;

https://github.com/tobigithub/tensorflow-deep-learning/wiki

Ankit Sachan ——Ilenze.com的创始人

在开始的时候遇到了一些与困难。所以创造了一系列的教程。教程Linkedin计算机视觉组上变得非常流行。

10分钟实用TensorFlow快速学习教程»CV-Tricks.com

Angel Mario Castro Martinez ——在马克斯普朗克学会工作

对我来说,最好的起点是主页本身:

http://www.tensorflow.org/versio ...

安装并习惯了如何处理数据和训练模型的方式,你可以尝试MNIST教程或其他几个教程

https://github.com/kronos-cm/Ten...

https://github.com/jasonbaldridg...

如果正在寻找一个压缩版本的上述主题,可以尝试

https://medium.com/@ilblackdrago...

Suraj Vantigodi ——在印度班加罗尔理工学院工作

一个有用的链接学习TensorFlow旦完成后可以去Udacity课程深度学习| Udacity

Kim Brian ——5年计算机编程经验

除了使用TensorFlow,有很多其它可能的解决方案。如果你是一个热心编码的人,建议不要使用TensorFlow,直到你知道如何编码基本AI。

正如Kuntal Mukherjee先生所说,建议从基础知识中学习

Chirila Sorina ——在Iasi计算机科学学院学习

查看以下两个答案:

TensorFlow(开源s / w库):如何使用张量流,什么是更好地了解它的最佳方式?

使用TensorFlow处理自然语言的具体步骤有哪些?

Ashwin D Kini ——喜欢阅读的Web开发人员

猜猜你没有访问过这个网站:

http://www.tensorflow.org/tutori...

对于初学者:

http://www.tensorflow.org/tutori...

Tuan Vu ——数据据科学家

如果你想了解张量流的基本结构,这个网站可能有帮助:学习TensorFlow

Kishore Karunakaran ——Vanenburg Software高级软件工程师

Tensorflow的教程:学习TensorFlow

Lifu Yi ——Mindx.ai的首席执行官

等待下一个更好的版本再学习它,当前版本的结构导致其糟糕的性能表现

 

本文由北邮@爱可可-爱生活老师推荐,阿里云云栖社区组织翻译。

文章原标题《Where can I start learning how to using TensorFlow 译者:海棠

文章为简译,更为详细的内容,请查看原文

Wechat:269970760 

Email:duanzhch@tju.edu.cn

微信公众号:AI科技时讯

157f33dddfc596ede3681e0a2a0e7068dc288cc1

目录
相关文章
|
TensorFlow 算法框架/工具
tensorflow 入门学习
tensorflow 入门学习
39 0
|
3月前
|
C# 开发者 前端开发
揭秘混合开发新趋势:Uno Platform携手Blazor,教你一步到位实现跨平台应用,代码复用不再是梦!
【8月更文挑战第31天】随着前端技术的发展,混合开发日益受到开发者青睐。本文详述了如何结合.NET生态下的两大框架——Uno Platform与Blazor,进行高效混合开发。Uno Platform基于WebAssembly和WebGL技术,支持跨平台应用构建;Blazor则让C#成为可能的前端开发语言,实现了客户端与服务器端逻辑共享。二者结合不仅提升了代码复用率与跨平台能力,还简化了项目维护并增强了Web应用性能。文中提供了从环境搭建到示例代码的具体步骤,并展示了如何创建一个简单的计数器应用,帮助读者快速上手混合开发。
83 0
|
6月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
关于Tensorflow!目标检测预训练模型的迁移学习
这篇文章主要介绍了使用Tensorflow进行目标检测的迁移学习过程。关于使用Tensorflow进行目标检测模型训练的实战教程,涵盖了从数据准备到模型应用的全过程,特别适合对此领域感兴趣的开发者参考。
74 3
关于Tensorflow!目标检测预训练模型的迁移学习
|
6月前
|
机器学习/深度学习 数据采集 TensorFlow
TensorFlow与迁移学习:利用预训练模型
【4月更文挑战第17天】本文介绍了如何在TensorFlow中运用迁移学习,特别是利用预训练模型提升深度学习任务的性能和效率。迁移学习通过将源任务学到的知识应用于目标任务,减少数据需求、加速收敛并提高泛化能力。TensorFlow Hub提供预训练模型接口,可加载模型进行特征提取或微调。通过示例代码展示了如何加载InceptionV3模型、创建特征提取模型以及进行微调。在实践中,注意源任务与目标任务的相关性、数据预处理和模型调整。迁移学习是提升模型性能的有效方法,TensorFlow的工具使其变得更加便捷。
|
机器学习/深度学习 TensorFlow API
学习 TensorFlow:构建和训练机器学习模型的利器
学习 TensorFlow:构建和训练机器学习模型的利器
|
TensorFlow 算法框架/工具 Python
【学习】TensorFlow2环境配置
【学习】TensorFlow2环境配置
72 0
|
机器学习/深度学习 TensorFlow API
TensorFlow2.0学习使用笔记
TensorFlow2.0学习使用笔记
|
4天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
垃圾识别分类系统。本系统采用Python作为主要编程语言,通过收集了5种常见的垃圾数据集('塑料', '玻璃', '纸张', '纸板', '金属'),然后基于TensorFlow搭建卷积神经网络算法模型,通过对图像数据集进行多轮迭代训练,最后得到一个识别精度较高的模型文件。然后使用Django搭建Web网页端可视化操作界面,实现用户在网页端上传一张垃圾图片识别其名称。
25 0
基于Python深度学习的【垃圾识别系统】实现~TensorFlow+人工智能+算法网络
|
4天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
19 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
4天前
|
机器学习/深度学习 人工智能 算法
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型
蔬菜识别系统,本系统使用Python作为主要编程语言,通过收集了8种常见的蔬菜图像数据集('土豆', '大白菜', '大葱', '莲藕', '菠菜', '西红柿', '韭菜', '黄瓜'),然后基于TensorFlow搭建卷积神经网络算法模型,通过多轮迭代训练最后得到一个识别精度较高的模型文件。在使用Django开发web网页端操作界面,实现用户上传一张蔬菜图片识别其名称。
22 0
基于深度学习的【蔬菜识别】系统实现~Python+人工智能+TensorFlow+算法模型

热门文章

最新文章