模拟退火算法及实例解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 同遗传算法一样,模拟退火算法也是现代优化算法的一种。他对于解决组合优化问题,如TSP,JSP等问题效果较好。关于模拟退火算法的详细介绍,可以参考这里模拟退火算法。

     同遗传算法一样,模拟退火算法也是现代优化算法的一种。他对于解决组合优化问题,如TSP,JSP等问题效果较好。关于模拟退火算法的详细介绍,可以参考这里模拟退火算法。

      还是拿我先前在遗传算法中举的那个例子来说,这里给出用模拟退火算法来解决的代码以及详细注释:

%模拟退火算法
%%  该部分同遗传算法
clc, clear
sj0=load('sj.txt');    %加载100个目标的数据,数据按照表格中的位置保存在纯文本文件sj.txt中
x=sj0(:,[1:2:8]);x=x(:); %取经度
y=sj0(:,[2:2:8]);y=y(:); %取纬度
sj=[x y]; d1=[70,40];    %表示每个目标以及出发点的坐标
sj=[d1;sj;d1]; sj=sj*pi/180; %角度化成弧度
d=zeros(102);                %距离矩阵d初始化
for i=1:101       %计算相邻两点的距离(距离是弧线)
   for j=i+1:102
       d(i,j)=6370*acos(cos(sj(i,1)-sj(j,1))*cos(sj(i,2))*cos(sj(j,2))+sin(sj(i,2))*sin(sj(j,2))); 
   end
end
d=d+d';   %距离矩阵
path=[];long=inf;           %巡航路径及长度初始化
rand('state',sum(clock));   %初始化随机数发生器
%%
for j=1:1000  %求较好的初始解
    path0=[1 1+randperm(100),102]; temp=0;
    for i=1:101
        temp=temp+d(path0(i),path0(i+1));
    end
    if temp<long
        path=path0; long=temp;
    end
end
e=0.1^30;L=20000;at=0.999;T=1;
for k=1:L  %退火过程
c=2+floor(100*rand(1,2));  %产生新解
c=sort(c); c1=c(1);c2=c(2);
  %计算代价函数值的增量
df=d(path(c1-1),path(c2))+d(path(c1),path(c2+1))-d(path(c1-1),path(c1))-d(path(c2),path(c2+1));
  if df<0 %接受准则
  path=[path(1:c1-1),path(c2:-1:c1),path(c2+1:102)]; long=long+df;
  elseif exp(-df/T)>rand
  path=[path(1:c1-1),path(c2:-1:c1),path(c2+1:102)]; long=long+df;
  end
  T=T*at;
   if T<e
       break;
   end
end
path, long % 输出巡航路径及路径长度
xx=sj(path,1);yy=sj(path,2);
plot(xx,yy,'-*', 'MarkerEdgeColor','g') %画出巡航路径

结果:

path =
  1 至 28 列
     1    95    35    93    36    43    52    46    59    83    87    74    30    20    42    15    40    60     9     5    54    55    44    38    98    50    80    51
  29 至 56 列
   100   101    99    21    56    96     6    89    37    12    53    75    33    73    13    32    24    49    61    28    25    68     7    71    22    81    58    23
  57 至 84 列
    90    66    34    29    26    63    62    86     8    39    78    47    57    88    16    91    41     4    76    69    11    64    70    19    94    65    85    77
  85 至 102 列
    79    31    97    18    84    10    27    14    72    48    82    92     2    67    45     3    17   102
long =
   4.4830e+04
>> 


e2921000dd9ed7fece99f06c5219b988_watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3dlaXhpbl80Mzc2NDk3NA==,size_16,color_FFFFFF,t_70#pic_center.jpg

相关文章
|
7天前
|
存储 算法 安全
基于红黑树的局域网上网行为控制C++ 算法解析
在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。
|
1月前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
168 30
|
11天前
|
存储 监控 算法
企业内网监控系统中基于哈希表的 C# 算法解析
在企业内网监控系统中,哈希表作为一种高效的数据结构,能够快速处理大量网络连接和用户操作记录,确保网络安全与效率。通过C#代码示例展示了如何使用哈希表存储和管理用户的登录时间、访问IP及操作行为等信息,实现快速的查找、插入和删除操作。哈希表的应用显著提升了系统的实时性和准确性,尽管存在哈希冲突等问题,但通过合理设计哈希函数和冲突解决策略,可以确保系统稳定运行,为企业提供有力的安全保障。
|
19天前
|
数据挖掘 vr&ar C++
让UE自动运行Python脚本:实现与实例解析
本文介绍如何配置Unreal Engine(UE)以自动运行Python脚本,提高开发效率。通过安装Python、配置UE环境及使用第三方插件,实现Python与UE的集成。结合蓝图和C++示例,展示自动化任务处理、关卡生成及数据分析等应用场景。
83 5
|
1月前
|
存储 算法
深入解析PID控制算法:从理论到实践的完整指南
前言 大家好,今天我们介绍一下经典控制理论中的PID控制算法,并着重讲解该算法的编码实现,为实现后续的倒立摆样例内容做准备。 众所周知,掌握了 PID ,就相当于进入了控制工程的大门,也能为更高阶的控制理论学习打下基础。 在很多的自动化控制领域。都会遇到PID控制算法,这种算法具有很好的控制模式,可以让系统具有很好的鲁棒性。 基本介绍 PID 深入理解 (1)闭环控制系统:讲解 PID 之前,我们先解释什么是闭环控制系统。简单说就是一个有输入有输出的系统,输入能影响输出。一般情况下,人们也称输出为反馈,因此也叫闭环反馈控制系统。比如恒温水池,输入就是加热功率,输出就是水温度;比如冷库,
315 15
|
1月前
|
存储 网络协议 算法
【C语言】进制转换无难事:二进制、十进制、八进制与十六进制的全解析与实例
进制转换是计算机编程中常见的操作。在C语言中,了解如何在不同进制之间转换数据对于处理和显示数据非常重要。本文将详细介绍如何在二进制、十进制、八进制和十六进制之间进行转换。
42 5
|
2月前
|
存储 机器学习/深度学习 编解码
阿里云服务器计算型c8i实例解析:实例规格性能及使用场景和最新价格参考
计算型c8i实例作为阿里云服务器家族中的重要成员,以其卓越的计算性能、稳定的算力输出、强劲的I/O引擎以及芯片级的安全加固,广泛适用于机器学习推理、数据分析、批量计算、视频编码、游戏服务器前端、高性能科学和工程应用以及Web前端服务器等多种场景。本文将全面介绍阿里云服务器计算型c8i实例,从规格族特性、适用场景、详细规格指标、性能优势、实际应用案例,到最新的活动价格,以供大家参考。
|
2月前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
2月前
|
算法 Linux 定位技术
Linux内核中的进程调度算法解析####
【10月更文挑战第29天】 本文深入剖析了Linux操作系统的心脏——内核中至关重要的组成部分之一,即进程调度机制。不同于传统的摘要概述,我们将通过一段引人入胜的故事线来揭开进程调度算法的神秘面纱,展现其背后的精妙设计与复杂逻辑,让读者仿佛跟随一位虚拟的“进程侦探”,一步步探索Linux如何高效、公平地管理众多进程,确保系统资源的最优分配与利用。 ####
76 4
|
2月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
92 2

热门文章

最新文章

推荐镜像

更多