昇思MindSpore“自动向量化Vmap”介绍与示例

简介: 昇思MindSpore“自动向量化Vmap”介绍与示例

🍁一、什么是“自动向量化Vmap”

自动向量化Vmap官方地址 👉  MindSpore

这应该是非常常见的问题了:自动向量化Vmap是MindSpore深度学习框架中的一个重要特性,用于自动地将数据并行化执行,以提高深度神经网络的计算性能。



概念上,Vmap可以将一个函数应用于一个具有特定形状的N维数组,并自动地将该函数复制到每个数组中的元素,从而实现批量计算的目的。也就是说,通过Vmap技术,可以将运算符应用于整个张量,而不是一次操作其中的每个元素,从而快速地对张量进行操作和转换,将输入和输出都分割成多个分块并分配到多个设备上进行并行处理,可以加快模型的训练和推理速度。

🍁二、 “自动向量化Vmap”有哪些优势

由于在实现过程上,MindSpore的Vmap特性涉及了多个类和函数,包括@vmapipe修饰器、map函数和unroll函数等。其中,@vmapipe修饰器可以将函数转换为自动并行计算函数,Map函数可用于将函数应用于数据集的批处理样本,Unroll函数可将计算循环展开为具有指定维度的代码。通过这些函数的组合使用,可以在MindSpore框架中实现自动向量化的Vmap特性,以提高神经网络的计算性能和效率


总之、MindSpore的自动向量化Vmap特性是一项非常有价值的功能,它可以大幅度提高深度学习算法的运算速度,减少需要的计算资源,同时还可以有效地加速模型的训练和推断过程,进一步推进深度学习技术的应用和发展。


如果还想了解更多“自动向量化Vmap”的优势和特点可以访问官方文档,非常的详细

effafb6b64c740b28c7591f98aa1b8fc.png

🍁三、 “自动向量化Vmap”在实际例子的简单使用

下面以一个简单的例子【Python版】来说明自动向量化Vmap的具体实现过程

假设我们需要对一个形状为(4, 5)的二维张量进行操作,具体步骤如下:

首先肯定是要导入MindSpore相关模块和库:

import mindspore.numpy as np
import mindspore.ops.operations as P
from mindspore import Tensor
from mindspore import context
from mindspore.parallel._auto_parallel_context import auto_parallel_context

其他的部分代码如下:

# 设置运行上下文和设备,开启自动并行计算。
context.set_context(mode=context.GRAPH_MODE, device_target="GPU")
auto_parallel_context().set_straegy("auto_parallel")
# 定义需要进行的操作函数。
def matmul_add(x, y):
    z = P.MatMul()(x, y)
    z = P.Add()(z, 1)
    return z
# 创建数据集,并将数据集分成多个分块以便并行处理。
x_data = np.ones((4, 5))
y_data = np.ones((5, 4))
data1 = Tensor(x_data[:2], dtype=np.float32)
data2 = Tensor(y_data, dtype=np.float32)
data3 = Tensor(x_data[2:], dtype=np.float32)
data_list = [(data1, data2), (data2, data3)]
# 使用@vmapipe修饰器和Map函数将操作函数应用于数据集,并获得结果数据。
@np.vmapipe(model_parallel=2)
def forward(x, y):
    return np.array(matmul_add(x, y))
result_list = np.array(list(map(forward, *data_list))))
# 使用unroll函数对计算循环进行展开。
result = np.unroll(result_list, -1)

最后,我们就可以使用自动向量化Vmap特性对二维张量进行自动并行计算,获得更高的计算效率和速度。其中,@vmapipe修饰器指定了model_parallel参数为2,表示使用2个设备进行并行计算,Map函数将操作函数应用于数据集,并返回结果数据,unroll函数可将计算循环展开为具有指定维度的代码。  

相关文章
|
13天前
|
数据采集 文字识别 测试技术
智源研究院发布千万级多模态指令数据集Infinity-MM:驱动开源模型迈向SOTA性能
近年来,视觉语言模型(VLM)取得了显著进展,然而,现有的开源数据和指令数据集在数量和质量上依然落后,基于开源数据训练的模型在效果上仍然远落后于 SOTA 闭源模型或使用专有数据训练的开源模型。为解决以上问题,进一步提升开源模型的性能,2024年10月25日,智源研究院发布并开源了千万级多模态指令数据集Infinity-MM。
|
1月前
|
前端开发 算法 测试技术
前端大模型应用笔记(五):大模型基础能力大比拼-计数篇-通义千文 vs 文心一言 vs 智谱 vs 讯飞vsGPT
本文对比测试了通义千文、文心一言、智谱和讯飞等多个国产大模型在处理基础计数问题上的表现,特别是通过链式推理(COT)提示的效果。结果显示,GPTo1-mini、文心一言3.5和讯飞4.0Ultra在首轮测试中表现优秀,而其他模型在COT提示后也能显著提升正确率,唯有讯飞4.0-Lite表现不佳。测试强调了COT在提升模型逻辑推理能力中的重要性,并指出免费版本中智谱GLM较为可靠。
前端大模型应用笔记(五):大模型基础能力大比拼-计数篇-通义千文 vs 文心一言 vs 智谱 vs 讯飞vsGPT
|
自然语言处理 测试技术 vr&ar
更强更通用:智源「悟道3.0」Emu多模态大模型开源,在多模态序列中「补全一切」
更强更通用:智源「悟道3.0」Emu多模态大模型开源,在多模态序列中「补全一切」
260 0
|
2月前
|
人工智能 测试技术
语言图像模型大一统!Meta将Transformer和Diffusion融合,多模态AI王者登场
【9月更文挑战第20天】Meta研究人员提出了一种名为Transfusion的创新方法,通过融合Transformer和Diffusion模型,实现了能同时处理文本和图像数据的多模态模型。此模型结合了语言模型的预测能力和Diffusion模型的生成能力,能够在单一架构中处理混合模态数据,有效学习文本与图像间的复杂关系,提升跨模态理解和生成效果。经过大规模预训练,Transfusion模型在多种基准测试中表现出色,尤其在图像压缩和模态特定编码方面具有优势。然而,其训练所需的大量计算资源和数据、以及潜在的伦理和隐私问题仍需关注。
70 7
|
3月前
|
机器学习/深度学习 人工智能 PyTorch
AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比
AI智能体研发之路-模型篇(五):pytorch vs tensorflow框架DNN网络结构源码级对比
78 1
|
6月前
|
存储 自然语言处理 负载均衡
元象开源首个MoE大模型:4.2B激活参数,效果堪比13B模型,魔搭社区最佳实践来了
近日,元象发布其首个Moe大模型 XVERSE-MoE-A4.2B, 采用混合专家模型架构 (Mixture of Experts),激活参数4.2B,效果即可媲美13B模型。该模型全开源,无条件免费商用,支持中小企业、研究者和开发者可在元象高性能“全家桶”中按需选用,推动低成本部署。
|
6月前
|
数据可视化 物联网 测试技术
零一万物Yi-1.5系列模型发布并开源!34B/9B/6B 多尺寸魔搭社区推理微调最佳实践教程来啦!
Yi-1.5是Yi的升级版本。 它使用 500B tokens的高质量语料库在 Yi 上持续进行预训练,并在 3M 个多样化的微调样本上进行微调。
|
6月前
|
人工智能 并行计算 PyTorch
极智AI | 教你tensorrt实现mish算子
本文介绍了使用 tensorrt 实现 mish 算子的方法。
129 1
|
6月前
|
机器学习/深度学习 人工智能 算法
极智AI | 教你简化onnx upsample算子
本文介绍了简化 onnx upsample 算子的方法。
258 0
|
6月前
|
机器学习/深度学习 人工智能 编解码
极智AI | 教你用C++实现一般模型推理图片预处理模块
大家好,我是极智视界,本文介绍了用 C++ 实现一般模型推理图片预处理的方法,通用性较强。
236 0