模型评估过程中,主要的验证方法与优缺点。

简介: 模型评估过程中,主要的验证方法与优缺点。

Holdout检验

Holdout检验是最简单也是最直接的验证方法,它将原始的样本随机划分成训练机和验证集两部分,通常情况下我们把样本按照70%-30%的比例分成两部分,70%用于模型的训练,30%用于模型的验证,包括绘制ROC曲线,计算精确率和召回率等指标来评估模型性能。


同时Holdout的缺点也很明显,即在验证集上计算出来的最后评估指标与原始的分组有很大关系,为了消除这种验证的随机性“交叉验证”出现了。


交叉验证

交叉验证是很常用的一种检验方法,常见的种类有k-fold交叉验证(K折交叉验证)和留一验证。


  • K-fold交叉验证


首先将全部的样本划分成K个大小相等的子集;依次遍历这K个样本,每次将遍历到的样本当作验证集,其余的样本作为训练集来进行模型的训练和评估,最后把他们的平均值作为最终的评估指标,通常情况下我们会将K的取值定为10。


  • 留一验证


每次留下一个样本作为验证集,其余所有样本作为测试集,样本的总数为n依次对n个样本进行遍历,进行n次验证,再将评估指标求得平均值得到最终的评估指标。


自助法

对于样本数量比较小的数据集,上述的方法(即便是留一法)会让训练集的数目减少,从而导致训练后的模型出现很大的误差影响了模型的结果。自助法能够比较好的解决这个问题。


自助法是基于自助采样法的一个检验方法,对于总数为n的样本集合,进行n次有放回的随机抽样,得到大小为n的训练集,在我们进行n次采样的过程中,有些样本会被重复采样,有些样本还没有被抽取过,我们将没有抽取的样本作为测试集进行模型的验证,这就是自助法的主要思想。

相关文章
|
7月前
|
机器学习/深度学习 数据采集 算法
大模型开发:什么是时间序列预测,以及如何处理此类数据?
时间序列预测分析历史数据以预测未来,涉及数据收集、预处理、模型选择(如ARIMA或DeepAR)、模型训练、评估及未来值预测。处理时序数据需注意时间依赖性,预处理和模型选择对准确性影响大。
153 3
|
7月前
|
数据采集 数据安全/隐私保护 开发者
|
3月前
|
机器学习/深度学习 存储 人工智能
让模型评估模型:构建双代理RAG评估系统的步骤解析
在当前大语言模型(LLM)应用开发中,评估模型输出的准确性成为关键问题。本文介绍了一个基于双代理的RAG(检索增强生成)评估系统,使用生成代理和反馈代理对输出进行评估。文中详细描述了系统的构建过程,并展示了基于四种提示工程技术(ReAct、思维链、自一致性和角色提示)的不同结果。实验结果显示,ReAct和思维链技术表现相似,自一致性技术则呈现相反结果,角色提示技术最为不稳定。研究强调了多角度评估的重要性,并提供了系统实现的详细代码。
70 10
让模型评估模型:构建双代理RAG评估系统的步骤解析
|
2月前
|
机器学习/深度学习 数据采集 算法
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
这篇博客文章介绍了如何使用包含多个网络和多种训练策略的框架来完成多目标分类任务,涵盖了从数据准备到训练、测试和部署的完整流程,并提供了相关代码和配置文件。
69 0
目标分类笔记(一): 利用包含多个网络多种训练策略的框架来完成多目标分类任务(从数据准备到训练测试部署的完整流程)
|
3月前
|
机器学习/深度学习 Python
验证集的划分方法:确保机器学习模型泛化能力的关键
本文详细介绍了机器学习中验证集的作用及其划分方法。验证集主要用于评估模型性能和调整超参数,不同于仅用于最终评估的测试集。文中描述了几种常见的划分方法,包括简单划分、交叉验证、时间序列数据划分及分层抽样划分,并提供了Python示例代码。此外,还强调了在划分数据集时应注意随机性、数据分布和多次实验的重要性。合理划分验证集有助于更准确地评估模型性能并进行有效调优。
|
4月前
|
SQL 自然语言处理 知识图谱
评估数据集CGoDial问题之TKK框架在知识获取阶段进行训练的问题如何解决
评估数据集CGoDial问题之TKK框架在知识获取阶段进行训练的问题如何解决
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
PVG:用小模型验证大模型输出,解决“黑盒”难题
【8月更文挑战第4天】随AI技术的发展,机器学习系统广泛应用,但在高风险领域如医疗和金融中,其决策需可验证与解释。为此,提出了“Prover-Verifier Games”(PVG)框架,通过两个学习者——证明者与验证者的博弈,前者提供决策及证据,后者评估证据真伪并做决策,以此提升决策透明度。实验显示,在图像分类和自然语言推理任务中,验证者能有效区分真假证据,即便证明者提供虚假信息。不过,PVG也面临计算成本高和适用范围有限等问题。
86 1
|
4月前
|
SQL 自然语言处理
评估数据集CGoDial问题之TKK框架提升模型泛化能力的问题如何解决
评估数据集CGoDial问题之TKK框架提升模型泛化能力的问题如何解决
|
7月前
|
缓存 人工智能 数据可视化
LLM 大模型学习必知必会系列(十一):大模型自动评估理论和实战以及大模型评估框架详解
LLM 大模型学习必知必会系列(十一):大模型自动评估理论和实战以及大模型评估框架详解
LLM 大模型学习必知必会系列(十一):大模型自动评估理论和实战以及大模型评估框架详解
|
自然语言处理 测试技术 Python
通过Chain Prompts方式将LLM的能力引入测试平台:正交实验测试用例生成
通过Chain Prompts方式将LLM的能力引入测试平台:正交实验测试用例生成
244 0