让模型评估模型:构建双代理RAG评估系统的步骤解析

本文涉及的产品
实时数仓Hologres,5000CU*H 100GB 3个月
实时计算 Flink 版,5000CU*H 3个月
智能开放搜索 OpenSearch行业算法版,1GB 20LCU 1个月
简介: 在当前大语言模型(LLM)应用开发中,评估模型输出的准确性成为关键问题。本文介绍了一个基于双代理的RAG(检索增强生成)评估系统,使用生成代理和反馈代理对输出进行评估。文中详细描述了系统的构建过程,并展示了基于四种提示工程技术(ReAct、思维链、自一致性和角色提示)的不同结果。实验结果显示,ReAct和思维链技术表现相似,自一致性技术则呈现相反结果,角色提示技术最为不稳定。研究强调了多角度评估的重要性,并提供了系统实现的详细代码。

在当前大语言模型(LLM)应用开发的背景下,一个关键问题是如何评估模型输出的准确性。我们需要确定哪些评估指标能够有效衡量提示(prompt)的效果,以及在多大程度上需要对提示进行优化。

为解决这一问题,我们将介绍一个基于双代理的RAG(检索增强生成)评估系统。该系统使用生成代理和反馈代理,基于预定义的测试集对输出进行评估。或者更简单的说,我们使用一个模型来评估另外一个模型的输出。

在本文中将详细介绍如何构建这样一个RAG评估系统,并展示基于四种提示工程技术的不同结果,包括ReAct、思维链(Chain of Thought)、自一致性(Self-Consistency)和角色提示(Role Prompting)。

以下是该项目的整体架构图:

数据收集与摄入

此部分在 ingestion.py 中实现

数据收集过程使用了三篇文章作为源数据。在加载和分割数据后,我们对文本进行嵌入,并将嵌入向量存储在FAISS中。FAISS(Facebook AI Similarity Search)是由Meta开发的开源库,用于高效进行密集向量的相似性搜索和聚类。

以下是实现代码:

 urls= [  
     "https://medium.com/@fareedkhandev/prompt-engineering-complete-guide-2968776f0431",  
     "https://medium.com/@researchgraph/prompt-engineering-21112dbfc789",  
     "https://blog.fabrichq.ai/what-is-prompt-engineering-a-detailed-guide-with-examples-4d3cbbd53792"  
 ]  
 loader=WebBaseLoader(urls)  
 # 文本分割器  
 text_splitter=RecursiveCharacterTextSplitter(  
     chunk_size=1000, chunk_overlap=20  
 )  
 documents=loader.load_and_split(text_splitter)  

 # LLM  
 embedder_llm=OpenAIModel().embed_model()  

 # 对文档块进行嵌入  
 vectorstore=FAISS.from_documents(documents, embedder_llm)  
 vectorstore.save_local("faiss_embed")  
 print("===== 数据摄入完成 ===== ")

创建测试集

此部分在 create_test_set.py 中实现

测试集的构建使用了Giskard工具。Giskard是一个开源工具,专为测试和改进机器学习模型而设计。它使用户能够创建、运行和自动化测试,以评估模型的性能、公平性和稳健性。

实现代码如下:

 fromlangchain_community.document_loadersimportWebBaseLoader  
 fromlangchain.text_splitterimportRecursiveCharacterTextSplitter  
 # 用于构建测试集  
 fromgiskard.ragimportKnowledgeBase, generate_testset  
 # 数据框  
 importpandasaspd  
 fromLLM.modelsimportOpenAIModel  

 if__name__=='__main__':  
     urls= [  
         "https://medium.com/@fareedkhandev/prompt-engineering-complete-guide-2968776f0431",  
         "https://medium.com/@researchgraph/prompt-engineering-21112dbfc789",  
         "https://blog.fabrichq.ai/what-is-prompt-engineering-a-detailed-guide-with-examples-4d3cbbd53792"  
     ]  
     loader=WebBaseLoader(urls)  
     # 文本分割器  
     text_splitter=RecursiveCharacterTextSplitter(  
         chunk_size=1000, chunk_overlap=20  
     )  
     documents=loader.load_and_split(text_splitter)  

     df=pd.DataFrame([doc.page_contentfordocindocuments], columns=["text"])  
     print(df.head(10))  

     ## 将数据框添加到giskard KnowledgeBase  
     knowledge_base=KnowledgeBase(df)  

     # 生成测试集  
     test_set=generate_testset(  
         knowledge_base,  
         num_questions=10,  
         agent_description="A chatbot answering question about prompt engineering"  
     )  
     test_set.save("test-set.jsonl")

由于文本太多,生成的样例就不显示了

答案检索

此部分在 generation.py 中实现

本文的第一个流程是生成流程。我们从FAISS检索数据。实现代码如下:

 generate_llm=OpenAIModel().generate_model()  
 embedder_llm=OpenAIModel().embed_model()  
 vectorstore=FAISS.load_local("faiss_embed", embedder_llm, allow_dangerous_deserialization=True)  

 retrieval_qa_chat_prompt= (retrieval)  

 prompt=ChatPromptTemplate.from_messages(  
     [  
         ("system", retrieval_qa_chat_prompt),  
         ("human", "{input}"),  
     ]  
 )
 combine_docs_chain=create_stuff_documents_chain(generate_llm, prompt)  
 retrival_chain=create_retrieval_chain(  
     retriever=vectorstore.as_retriever(),  
     combine_docs_chain=combine_docs_chain  
 )

评估

此部分在 evaluation.py 中实现

评估过程中向LLM提供三个输入:问题、AI答案(第一个LLM的输出)和实际答案(从测试集中检索)。实现代码如下:

 defRAG_eval(question, AI_answer, Actual_answer, prompt):  
     evaluation_prompt_template=PromptTemplate(  
         input_variables=[  
             "question", "AI_answer", "Actual_answer"  
         ],  
         template=prompt  
     )  
     generate_llm=OpenAIModel().generate_model()  

     optimization_chain=evaluation_prompt_template|generate_llm|StrOutputParser()  

     result_optimization=optimization_chain.invoke(  
         {"question": question, "AI_answer": AI_answer, "Actual_answer": Actual_answer})  
     returnresult_optimization

链接整合

此部分在 main.py 中实现

主文件遍历测试数据,使用问题作为第一个LLM的输入。然后将第一个LLM的输出用作第二个LLM的输入。实现代码如下:

 foritemindata:  
     question= {"input": item['question']}  
     # 生成回答  
     result=retrival_chain.invoke(input=question)  
     AI_answer=result['answer']  
     # 获取实际答案  
     Actual_answer=item['reference_answer']  

     # 将所有内容提供给第二个LLM  
     Evaluation=RAG_eval(  
         question=question,  
         AI_answer=AI_answer,  
         Actual_answer=Actual_answer,  
         prompt=evaluation_self_consistency_prompting  
     )  

     print(f"AI_answer:{AI_answer}")  
     print(Evaluation)

实验结果

评估组件采用了四种不同的提示工程技术:

  1. 思维链(Chain of Thought)
  2. ReAct
  3. 角色提示(Role Prompting)
  4. 自一致性(Self-Consistency)

以下是基于这四种不同提示技术的评估代理对测试集第一个问题的输出示例:

问题: What is the purpose of incorporating knowledge in prompt engineering?

实际答案: Incorporating knowledge or information in prompt engineering enhances the model’s prediction accuracy. By providing relevant knowledge or information related to the task at hand, the model can leverage this additional context to make more accurate predictions. This technique enables the model to tap into external resources or pre-existing knowledge to improve its understanding and generate more informed responses

AI答案:Incorporating knowledge in prompt engineering enhances the quality of responses by guiding AI models to provide not just answers, but also relevant context and insights. This leads to more informative and meaningful interactions, improving user experience and understanding.

使用思维链输出评估结果:The student’s answer correctly identifies that incorporating knowledge enhances the quality of responses and improves user experience. However, it lacks emphasis on the model’s prediction accuracy and the importance of leveraging external resources or pre-existing knowledge, which are key components of the actual answer. This omission affects the completeness and correctness of the response.

使用ReAct输出评估结果The student’s answer correctly identifies that incorporating knowledge enhances the quality of responses and improves user experience. However, it lacks emphasis on the specific aspect of prediction accuracy and the importance of leveraging external resources or pre-existing knowledge, which are key components of the actual answer. This omission affects the completeness of the response, leading to a lower evaluation percentage.

使用角色提示输出评估结果The student’s response accurately captures the essence of incorporating knowledge in prompt engineering by emphasizing the enhancement of response quality and user experience. However, it lacks specific mention of prediction accuracy and the model’s ability to leverage external resources, which are key aspects of the actual response.

使用自一致性输出评估结果The student’s answer captures the essence of enhancing the quality of responses through knowledge incorporation, but it lacks specific mention of prediction accuracy and the model’s ability to leverage external resources. The initial evaluation was slightly optimistic, but upon reevaluation, it became clear that the answer did not fully align with the actual answer’s emphasis on prediction accuracy and context utilization

实验结果分析

下图展示了四种提示工程技术的准确性比较。每种技术由图中的一条独立线条表示,X轴上的10个数据点对应测试数据的索引值,Y轴表示准确性值。

在评估过程中,准确性达到85%及以上的响应视为真正准确(True),低于85%则视为不准确(False)。下面的条形图展示了基于每种提示工程技术的评估结果中True和False的计数。

实验结果显示,ReAct和思维链(Chain of Thought)的性能几乎相似,而自一致性(Self-Consistency)则表现出完全相反的行为。角色提示(Role Prompting)在所有方法中表现最不稳定。

一些发现

  1. 评估代理的所有响应虽然在内容上相近,都提到了类似的缺失元素,但反馈之间的差异主要体现在具体措辞和强调点上,这些细微差别可能会对最终的评分过程产生影响。
  2. 角色提示和自一致性技术倾向于强调结果的积极方面,而ReAct和思维链则更多地使用特定措辞来突出回答中的缺失部分。

总结

本文展示了如何构建一个基于双代理的RAG(检索增强生成)评估系统,该系统使用两个大语言模型(LLM):一个用于生成响应,另一个用于提供反馈。通过采用四种不同的提示工程技术——思维链、ReAct、角色提示和自一致性,我们能够全面评估AI生成响应的准确性和质量。

实验结果表明:

  1. ReAct和思维链技术在性能上表现相似,这可能是因为它们都强调了结构化思考过程。
  2. 自一致性技术经常产生与其他方法相反的结果,这突显了在评估过程中考虑多个角度的重要性。
  3. 角色提示技术被证明是最不可靠的,这可能是由于其在不同上下文中的不一致性。

本文代码:

https://avoid.overfit.cn/post/f64e1de74d8a423a859086dfed4d5a47

作者:Homayoun S.

目录
相关文章
|
1月前
|
机器学习/深度学习 人工智能 算法
DeepSeek技术报告解析:为什么DeepSeek-R1 可以用低成本训练出高效的模型
DeepSeek-R1 通过创新的训练策略实现了显著的成本降低,同时保持了卓越的模型性能。本文将详细分析其核心训练方法。
566 11
DeepSeek技术报告解析:为什么DeepSeek-R1 可以用低成本训练出高效的模型
|
12天前
|
云安全 人工智能 安全
阿里云网络安全体系解析:如何构建数字时代的"安全盾牌"
在数字经济时代,阿里云作为亚太地区最大的云服务提供商,构建了行业领先的网络安全体系。本文解析其网络安全架构的三大核心维度:基础架构安全、核心技术防护和安全管理体系。通过技术创新与体系化防御,阿里云为企业数字化转型提供坚实的安全屏障,确保数据安全与业务连续性。案例显示,某金融客户借助阿里云成功拦截3200万次攻击,降低运维成本40%,响应时间缩短至8分钟。未来,阿里云将继续推进自适应安全架构,助力企业提升核心竞争力。
|
20天前
|
存储 人工智能 程序员
通义灵码AI程序员实战:从零构建Python记账本应用的开发全解析
本文通过开发Python记账本应用的真实案例,展示通义灵码AI程序员2.0的代码生成能力。从需求分析到功能实现、界面升级及测试覆盖,AI程序员展现了需求转化、技术选型、测试驱动和代码可维护性等核心价值。文中详细解析了如何使用Python标准库和tkinter库实现命令行及图形化界面,并生成单元测试用例,确保应用的稳定性和可维护性。尽管AI工具显著提升开发效率,但用户仍需具备编程基础以进行调试和优化。
209 9
|
26天前
|
人工智能 自然语言处理 算法
DeepSeek模型的突破:性能超越R1满血版的关键技术解析
上海AI实验室周伯文团队的最新研究显示,7B版本的DeepSeek模型在性能上超越了R1满血版。该成果强调了计算最优Test-Time Scaling的重要性,并提出了一种创新的“弱到强”优化监督机制的研究思路,区别于传统的“从强到弱”策略。这一方法不仅提升了模型性能,还为未来AI研究提供了新方向。
487 5
|
4天前
|
存储 前端开发 JavaScript
在线教育网课系统源码开发指南:功能设计与技术实现深度解析
在线教育网课系统是近年来发展迅猛的教育形式的核心载体,具备用户管理、课程管理、教学互动、学习评估等功能。本文从功能和技术两方面解析其源码开发,涵盖前端(HTML5、CSS3、JavaScript等)、后端(Java、Python等)、流媒体及云计算技术,并强调安全性、稳定性和用户体验的重要性。
|
2月前
|
自然语言处理
高效团队的秘密:7大团队效能模型解析
3分钟了解7大团队效能模型,有效提升团队绩效。
158 7
高效团队的秘密:7大团队效能模型解析
|
2月前
|
存储 分布式计算 Hadoop
基于Java的Hadoop文件处理系统:高效分布式数据解析与存储
本文介绍了如何借鉴Hadoop的设计思想,使用Java实现其核心功能MapReduce,解决海量数据处理问题。通过类比图书馆管理系统,详细解释了Hadoop的两大组件:HDFS(分布式文件系统)和MapReduce(分布式计算模型)。具体实现了单词统计任务,并扩展支持CSV和JSON格式的数据解析。为了提升性能,引入了Combiner减少中间数据传输,以及自定义Partitioner解决数据倾斜问题。最后总结了Hadoop在大数据处理中的重要性,鼓励Java开发者学习Hadoop以拓展技术边界。
72 7
|
3月前
|
存储 监控 算法
企业内网监控系统中基于哈希表的 C# 算法解析
在企业内网监控系统中,哈希表作为一种高效的数据结构,能够快速处理大量网络连接和用户操作记录,确保网络安全与效率。通过C#代码示例展示了如何使用哈希表存储和管理用户的登录时间、访问IP及操作行为等信息,实现快速的查找、插入和删除操作。哈希表的应用显著提升了系统的实时性和准确性,尽管存在哈希冲突等问题,但通过合理设计哈希函数和冲突解决策略,可以确保系统稳定运行,为企业提供有力的安全保障。
|
2月前
|
安全 网络协议 应用服务中间件
2025通配符证书免费申请步骤解析
打造安全、高效的网站加密环境,从免费通配符SSL证书开始!今年我们特别推出免费通配符SSL证书申请活动,覆盖主域名及所有子域名。只需一次申请,即可保护无限子域名,节省时间和资源。全程0成本,自动化流程快速配置,权威CA机构签发,兼容主流浏览器与平台。非技术人员也能轻松操作,提升网站安全性与用户信任度。立即访问JoySSL官网注册并申请,享受顶级加密服务!
|
4月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
144 2

推荐镜像

更多