Apache Kafka-生产者_批量发送消息的核心参数及功能实现

简介: Apache Kafka-生产者_批量发送消息的核心参数及功能实现

20191116123525638.png

概述


kafka中有个 micro batch 的概念 ,为了提高Producer 发送的性能。


不同于RocketMQ 提供了一个可以批量发送多条消息的 API 。 Kafka 的做法是:提供了一个 RecordAccumulator 消息收集器,将发送给相同 Topic 的相同 Partition 分区的消息们,缓冲一下,当满足条件时候,一次性批量将缓冲的消息提交给 Kafka Broker 。



参数设置


https://kafka.apache.org/24/documentation.html#producerconfigs

主要涉及的参数 ,三个条件,满足任一即会批量发送:

  • batch-size :超过收集的消息数量的最大量。默认16KB


20210218101223635.png


  • buffer-memory :超过收集的消息占用的最大内存 , 默认32M


20210218101153723.png


  • linger.ms :超过收集的时间的最大等待时长,单位:毫秒。


20210218101304908.png



Code

POM依赖

  <dependencies>
    <dependency>
      <groupId>org.springframework.boot</groupId>
      <artifactId>spring-boot-starter-web</artifactId>
    </dependency>
    <!-- 引入 Spring-Kafka 依赖 -->
    <dependency>
      <groupId>org.springframework.kafka</groupId>
      <artifactId>spring-kafka</artifactId>
    </dependency>
    <dependency>
      <groupId>org.springframework.boot</groupId>
      <artifactId>spring-boot-starter-test</artifactId>
      <scope>test</scope>
    </dependency>
    <dependency>
      <groupId>junit</groupId>
      <artifactId>junit</artifactId>
      <scope>test</scope>
    </dependency>
  </dependencies>

配置文件

spring:
  # Kafka 配置项,对应 KafkaProperties 配置类
  kafka:
    bootstrap-servers: 192.168.126.140:9092 # 指定 Kafka Broker 地址,可以设置多个,以逗号分隔
    # Kafka Producer 配置项
    producer:
      acks: 1 # 0-不应答。1-leader 应答。all-所有 leader 和 follower 应答。
      retries: 3 # 发送失败时,重试发送的次数
      key-serializer: org.apache.kafka.common.serialization.StringSerializer # 消息的 key 的序列化
      value-serializer: org.springframework.kafka.support.serializer.JsonSerializer # 消息的 value 的序列化
      batch-size: 16384 # 每次批量发送消息的最大数量   单位 字节  默认 16K
      buffer-memory: 33554432 # 每次批量发送消息的最大内存 单位 字节  默认 32M
      properties:
        linger:
          ms: 10000 # 批处理延迟时间上限。[实际不会配这么长,这里用于测速]这里配置为 10 * 1000 ms 过后,不管是否消息数量是否到达 batch-size 或者消息大小到达 buffer-memory 后,都直接发送一次请求。
    # Kafka Consumer 配置项
    consumer:
      auto-offset-reset: earliest # 设置消费者分组最初的消费进度为 earliest
      key-deserializer: org.apache.kafka.common.serialization.StringDeserializer
      value-deserializer: org.springframework.kafka.support.serializer.JsonDeserializer
      properties:
        spring:
          json:
            trusted:
              packages: com.artisan.springkafka.domain
    # Kafka Consumer Listener 监听器配置
    listener:
      missing-topics-fatal: false # 消费监听接口监听的主题不存在时,默认会报错。所以通过设置为 false ,解决报错
logging:
  level:
    org:
      springframework:
        kafka: ERROR # spring-kafka
      apache:
        kafka: ERROR # kafka



20210218111845472.png


生产者

package com.artisan.springkafka.producer;
import com.artisan.springkafka.constants.TOPIC;
import com.artisan.springkafka.domain.MessageMock;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.kafka.core.KafkaTemplate;
import org.springframework.kafka.support.SendResult;
import org.springframework.stereotype.Component;
import org.springframework.util.concurrent.ListenableFuture;
import java.util.Random;
import java.util.concurrent.ExecutionException;
/**
 * @author 小工匠
 * @version 1.0
 * @description: TODO
 * @date 2021/2/17 22:25
 * @mark: show me the code , change the world
 */
@Component
public class ArtisanProducerMock {
    @Autowired
    private KafkaTemplate<Object,Object> kafkaTemplate ;
    /**
     * 同步发送
     * @return
     * @throws ExecutionException
     * @throws InterruptedException
     */
    public SendResult sendMsgSync() throws ExecutionException, InterruptedException {
        // 模拟发送的消息
        Integer id = new Random().nextInt(100);
        MessageMock messageMock = new MessageMock(id,"artisanTestMessage-" + id);
        // 同步等待
       return  kafkaTemplate.send(TOPIC.TOPIC, messageMock).get();
    }
    public ListenableFuture<SendResult<Object, Object>> sendMsgASync() throws ExecutionException, InterruptedException {
        // 模拟发送的消息
        Integer id = new Random().nextInt(100);
        MessageMock messageMock = new MessageMock(id,"messageSendByAsync-" + id);
        // 异步发送消息
        ListenableFuture<SendResult<Object, Object>> result = kafkaTemplate.send(TOPIC.TOPIC, messageMock);
        return result ;
    }
}


消费者

package com.artisan.springkafka.consumer;
import com.artisan.springkafka.domain.MessageMock;
import com.artisan.springkafka.constants.TOPIC;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;
/**
 * @author 小工匠
 * @version 1.0
 * @description: TODO
 * @date 2021/2/17 22:33
 * @mark: show me the code , change the world
 */
@Component
public class ArtisanCosumerMock {
    private Logger logger = LoggerFactory.getLogger(getClass());
    private static final String CONSUMER_GROUP_PREFIX = "MOCK-A" ;
    @KafkaListener(topics = TOPIC.TOPIC ,groupId = CONSUMER_GROUP_PREFIX + TOPIC.TOPIC)
    public void onMessage(MessageMock messageMock){
        logger.info("【接受到消息][线程:{} 消息内容:{}]", Thread.currentThread().getName(), messageMock);
    }
}


package com.artisan.springkafka.consumer;
import com.artisan.springkafka.domain.MessageMock;
import com.artisan.springkafka.constants.TOPIC;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.kafka.annotation.KafkaListener;
import org.springframework.stereotype.Component;
/**
 * @author 小工匠
 * @version 1.0
 * @description: TODO
 * @date 2021/2/17 22:33
 * @mark: show me the code , change the world
 */
@Component
public class ArtisanCosumerMockDiffConsumeGroup {
    private Logger logger = LoggerFactory.getLogger(getClass());
    private static final String CONSUMER_GROUP_PREFIX = "MOCK-B" ;
    @KafkaListener(topics = TOPIC.TOPIC ,groupId = CONSUMER_GROUP_PREFIX + TOPIC.TOPIC)
    public void onMessage(MessageMock messageMock){
        logger.info("【接受到消息][线程:{} 消息内容:{}]", Thread.currentThread().getName(), messageMock);
    }
}

单元测试

package com.artisan.springkafka.produceTest;
import com.artisan.springkafka.SpringkafkaApplication;
import com.artisan.springkafka.producer.ArtisanProducerMock;
import org.junit.Test;
import org.junit.runner.RunWith;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.kafka.support.SendResult;
import org.springframework.test.context.junit4.SpringRunner;
import org.springframework.util.concurrent.ListenableFuture;
import org.springframework.util.concurrent.ListenableFutureCallback;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
/**
 * @author 小工匠
 *  * @version 1.0
 * @description: TODO
 * @date 2021/2/17 22:40
 * @mark: show me the code , change the world
 */
@RunWith(SpringRunner.class)
@SpringBootTest(classes = SpringkafkaApplication.class)
public class ProduceMockTest {
    private Logger logger = LoggerFactory.getLogger(getClass());
    @Autowired
    private ArtisanProducerMock artisanProducerMock;
    @Test
    public void testAsynSend() throws ExecutionException, InterruptedException {
        logger.info("开始发送");
        for (int i = 0; i < 2; i++) {
            artisanProducerMock.sendMsgASync().addCallback(new ListenableFutureCallback<SendResult<Object, Object>>() {
                @Override
                public void onFailure(Throwable throwable) {
                    logger.info(" 发送异常{}]]", throwable);
                }
                @Override
                public void onSuccess(SendResult<Object, Object> objectObjectSendResult) {
                    logger.info("回调结果 Result =  topic:[{}] , partition:[{}], offset:[{}]",
                         objectObjectSendResult.getRecordMetadata().topic(),
                            objectObjectSendResult.getRecordMetadata().partition(),
                            objectObjectSendResult.getRecordMetadata().offset());
                }
            });
            //  发送2次 每次间隔5秒, 凑够我们配置的 linger:  ms:  10000
            TimeUnit.SECONDS.sleep(5);
        }
        // 阻塞等待,保证消费
        new CountDownLatch(1).await();
    }
}


异步发送2条消息,每次发送消息之间, sleep 5 秒,以便达到配置的 linger.ms 最大等待时长10秒。


测试结果

2021-02-18 10:58:53.360  INFO 24736 --- [           main] c.a.s.produceTest.ProduceMockTest        : 开始发送
2021-02-18 10:59:03.555  INFO 24736 --- [ad | producer-1] c.a.s.produceTest.ProduceMockTest        : 回调结果 Result =  topic:[MOCK_TOPIC] , partition:[0], offset:[30]
2021-02-18 10:59:03.556  INFO 24736 --- [ad | producer-1] c.a.s.produceTest.ProduceMockTest        : 回调结果 Result =  topic:[MOCK_TOPIC] , partition:[0], offset:[31]
2021-02-18 10:59:03.595  INFO 24736 --- [ntainer#0-0-C-1] c.a.s.consumer.ArtisanCosumerMock        : 【接受到消息][线程:org.springframework.kafka.KafkaListenerEndpointContainer#0-0-C-1 消息内容:MessageMock{id=6, name='messageSendByAsync-6'}]
2021-02-18 10:59:03.595  INFO 24736 --- [ntainer#1-0-C-1] a.s.c.ArtisanCosumerMockDiffConsumeGroup : 【接受到消息][线程:org.springframework.kafka.KafkaListenerEndpointContainer#1-0-C-1 消息内容:MessageMock{id=6, name='messageSendByAsync-6'}]
2021-02-18 10:59:03.595  INFO 24736 --- [ntainer#1-0-C-1] a.s.c.ArtisanCosumerMockDiffConsumeGroup : 【接受到消息][线程:org.springframework.kafka.KafkaListenerEndpointContainer#1-0-C-1 消息内容:MessageMock{id=94, name='messageSendByAsync-94'}]
2021-02-18 10:59:03.595  INFO 24736 --- [ntainer#0-0-C-1] c.a.s.consumer.ArtisanCosumerMock        : 【接受到消息][线程:org.springframework.kafka.KafkaListenerEndpointContainer#0-0-C-1 消息内容:MessageMock{id=94, name='messageSendByAsync-94'}]


2021021811195147.png


10 秒后,满足批量消息的最大等待时长,所以 2 条消息被 Producer 批量发送。同时我们配置的是 acks=1 ,需要等待发送成功后,才会回调 ListenableFutureCallback 的方法。


当然了,我们这里都是为了测试,设置的这么长的间隔,实际中需要根据具体的业务场景设置一个合理的值。


源码地址

https://github.com/yangshangwei/boot2/tree/master/springkafkaBatchSend

相关文章
|
4月前
|
消息中间件 监控 Java
Apache Kafka 分布式流处理平台技术详解与实践指南
本文档全面介绍 Apache Kafka 分布式流处理平台的核心概念、架构设计和实践应用。作为高吞吐量、低延迟的分布式消息系统,Kafka 已成为现代数据管道和流处理应用的事实标准。本文将深入探讨其生产者-消费者模型、主题分区机制、副本复制、流处理API等核心机制,帮助开发者构建可靠、可扩展的实时数据流处理系统。
472 4
|
8月前
|
消息中间件 Linux Kafka
linux命令使用消费kafka的生产者、消费者
linux命令使用消费kafka的生产者、消费者
371 16
|
6月前
|
消息中间件 存储 监控
Apache Kafka 3.0与KRaft模式的革新解读
在该架构中,Kafka集群依旧包含多个broker节点,但已不再依赖ZooKeeper集群。被选中的Kafka集群Controller将从KRaft Quorum中加载其状态,并在必要时通知其他Broker节点关于元数据的变更。这种设计支持更多分区与快速Controller切换,并有效避免了因数据不一致导致的问题。
|
11月前
|
消息中间件 Kafka
【赵渝强老师】Kafka生产者的执行过程
Kafka生产者(Producer)将消息序列化后发送到指定主题的分区。整个过程由主线程和Sender线程协调完成。主线程创建KafkaProducer对象及ProducerRecord,经过拦截器、序列化器和分区器处理后,消息进入累加器。Sender线程负责从累加器获取消息并发送至KafkaBroker,Broker返回响应或错误信息,生产者根据反馈决定是否重发。视频和图片详细展示了这一流程。
273 61
|
10月前
|
消息中间件 Java Kafka
SpringBoot使用Kafka生产者、消费者
SpringBoot使用Kafka生产者、消费者
545 10
|
11月前
|
消息中间件 Kafka
【赵渝强老师】Kafka生产者的消息发送方式
Kafka生产者支持三种消息发送方式:1. **fire-and-forget**:发送后不关心结果,适用于允许消息丢失的场景;2. **同步发送**:通过Future对象确保消息成功送达,适用于高可靠性需求场景;3. **异步发送**:使用回调函数处理结果,吞吐量较高但牺牲部分可靠性。视频和代码示例详细讲解了这三种方式的具体实现。
381 5
|
消息中间件 Java Kafka
什么是Apache Kafka?如何将其与Spring Boot集成?
什么是Apache Kafka?如何将其与Spring Boot集成?
673 5
|
3月前
|
人工智能 数据处理 API
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
Apache Flink Agents 是由阿里云、Ververica、Confluent 与 LinkedIn 联合推出的开源子项目,旨在基于 Flink 构建可扩展、事件驱动的生产级 AI 智能体框架,实现数据与智能的实时融合。
675 6
阿里云、Ververica、Confluent 与 LinkedIn 携手推进流式创新,共筑基于 Apache Flink Agents 的智能体 AI 未来
|
存储 Cloud Native 数据处理
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
本文整理自阿里云资深技术专家、Apache Flink PMC 成员梅源在 Flink Forward Asia 新加坡 2025上的分享,深入解析 Flink 状态管理系统的发展历程,从核心设计到 Flink 2.0 存算分离架构,并展望未来基于流批一体的通用增量计算方向。
417 0
从嵌入式状态管理到云原生架构:Apache Flink 的演进与下一代增量计算范式
|
5月前
|
SQL 人工智能 数据挖掘
Apache Flink:从实时数据分析到实时AI
Apache Flink 是实时数据处理领域的核心技术,历经十年发展,已从学术项目成长为实时计算的事实标准。它在现代数据架构中发挥着关键作用,支持实时数据分析、湖仓集成及实时 AI 应用。随着 Flink 2.0 的发布,其在流式湖仓、AI 驱动决策等方面展现出强大潜力,正推动企业迈向智能化、实时化的新阶段。
722 9
Apache Flink:从实时数据分析到实时AI

推荐镜像

更多