Apache ZooKeeper - 集群中 Leader 的作用_事务的请求处理与调度分析

本文涉及的产品
任务调度 XXL-JOB 版免费试用,400 元额度,开发版规格
云原生网关 MSE Higress,422元/月
注册配置 MSE Nacos/ZooKeeper,182元/月
简介: Apache ZooKeeper - 集群中 Leader 的作用_事务的请求处理与调度分析

20201224230238563.png


Leader 服务器在 ZooKeeper 中的作主要是处理事务性的会话请求以及管理 ZooKeeper 集群中的其他角色服务器

那么 在接收到来自客户端的事务性会话请求后,ZooKeeper 集群内部又是如何判断会话的请求类型,以及转发处理事务性请求的呢?


事务性请求处理


在 ZooKeeper 集群接收到来自客户端的会话请求操作后,首先会判断该条请求是否是事务性的会话请求。


对于事务性的会话请求,ZooKeeper 集群服务端会将该请求统一转发给 Leader 服务器进行操作。Leader 服务器内部执行该条事务性的会话请求后,再将数据同步给其他角色服务器,从而保证事务性会话请求的执行顺序,进而保证整个 ZooKeeper 集群的数据一致性。


20201224230556567.png

在 ZooKeeper 集群的内部实现中,是通过什么方法保证所有 ZooKeeper 集群接收到的事务性会话请求都能交给 Leader 服务器进行处理的呢?


在 ZooKeeper 集群内部,集群中除 Leader 服务器外的其他角色服务器接收到来自客户端的事务性会话请求后,必须将该条会话请求转发给 Leader 服务器进行处理。 ZooKeeper 集群中的 Follow 和 Observer 服务器,都会检查当前接收到的会话请求是否是事务性的请求,如果是事务性的请求,那么就将该请求以 REQUEST 消息类型转发给 Leader 服务器。


在 ZooKeeper集群中的服务器接收到该条消息后,会对该条消息进行解析。分析出该条消息所包含的原始客户端会话请求。之后将该条消息提交到自己的 Leader 服务器请求处理链中,开始进行事务性的会话请求操作。如果不是事务性请求,ZooKeeper 集群则交由 Follow 和 Observer 角色服务器处理该条会话请求,如查询数据节点信息。


Leader 事务处理分析


以客户端发起的创建节点请求 setData 为例,具体看看 ZooKeeper 集群的底层处理过程。


在 ZooKeeper 集群接收到来自客户端的一个 setData 会话请求后,其内部的处理逻辑基本可以分成四个部分 ,分别是预处理阶段、事务处理阶段、事务执行阶段、响应客户端。


20201224230737864.png


预处理阶段


在预处理阶段,主要工作是通过网络 I/O 接收来自客户端的会话请求。判断该条会话请求的类型是否是事务性的会话请求,之后将该请求提交给PrepRequestProcessor 处理器进行处理。封装请求事务头并检查会话是否过期,最后反序列化事务请求信息创建 setDataRequest 请求,在 setDataRequest 记录中包含了要创建数据的节点的路径、数据节点的内容信息以及数据节点的版本信息。最后将该请求存放在 outstandingChanges 队列中等待之后的处理。


20201224232456866.png

事务处理阶段


在事务处理阶段,ZooKeeper 集群内部会将该条会话请求提交ProposalRequestProcessor 处理器进行处理。



2020122423233213.png

事务执行阶段


在经过预处理阶段和事务会话的投票发起等操作后,一个事务性的会话请求都已经准备好了,接下来就是在 ZooKeeper 的数据库中执行该条会话的数据变更操作。


在处理数据变更的过程中,ZooKeeper 内部会将该请求会话的事务头和事务体信息直接交给内存数据库 ZKDatabase 进行事务性的持久化操作。之后返回 ProcessTxnResult 对象表明操作结果是否成功。

20201224232608869.png

响应阶段


在 ZooKeeper 集群处理完客户端 setData 方法发送的数据节点创建请求后,会将处理结果发送给客户端。


在响应客户端的过程中,ZooKeeper 内部首先会创建一个 setDataResponse 响应体类型,该对象主要包括当前会话请求所创建的数据节点,以及其最新状态字段信息 stat。


之后创建请求响应头信息,响应头作为客户端请求响应的重要信息,客户端在接收到 ZooKeeper 集群的响应后,通过解析响应头信息中的事务 ZXID 和请求结果标识符 err 来判断该条会话请求是否成功执行。


20201224232817671.png

源码分析


首先,ZooKeeper 集群在收到客户端发送的事务性会话请求后,会对该请求进行预处理。在代码层面,ZooKeeper 通过调用 PrepRequestProcessor 类来实现预处理阶段的全部逻辑。


可以这样理解:在处理客户端会话请求的时候,首先调用的就是 PrepRequestProcessor 类。而在 PrepRequestProcessor 内部,是通过 pRequest 方法判断客户端发送的会话请求类型。如果是诸如 setData 数据节点创建等事务性的会话请求,就调用 pRequest2Txn 方法进一步处理。

protected void pRequest(Request request){
...
  switch (request.type) {
  case OpCode.setData:
    SetDataRequest setDataRequest = new SetDataRequest();                
    pRequest2Txn(request.type, zks.getNextZxid(), request, setDataRequest, true);
    break;
   }
}


而在 pRequest2Txn 方法的内部,就实现了预处理阶段的主要逻辑。如下面的代码所示,首先通过 checkSession 方法检查该条会话请求是否有效(比如会话是否过期等),之后调用 checkACL 检查发起会话操作的客户端在 ZooKeeper 服务端是否具有相关操作的权限。最后将该条会话创建的相关信息,诸如 path 节点路径、data 节点数据信息、version 节点版本信息等字段封装成setDataRequest 类型并传入到 setTxn 方法中,最后加入处理链中进行处理。

case OpCode.setData:
    zks.sessionTracker.checkSession(request.sessionId, request.getOwner());
    SetDataRequest setDataRequest = (SetDataRequest)record;
    if(deserialize)
        ByteBufferInputStream.byteBuffer2Record(request.request, setDataRequest);
    path = setDataRequest.getPath();
    validatePath(path, request.sessionId);
    nodeRecord = getRecordForPath(path);
    checkACL(zks, request.cnxn, nodeRecord.acl, ZooDefs.Perms.WRITE, request.authInfo, path, null);
    int newVersion = checkAndIncVersion(nodeRecord.stat.getVersion(), setDataRequest.getVersion(), path);
    request.setTxn(new SetDataTxn(path, setDataRequest.getData(), newVersion));
    nodeRecord = nodeRecord.duplicate(request.getHdr().getZxid());
    nodeRecord.stat.setVersion(newVersion);
    addChangeRecord(nodeRecord);


小结


主要梳理了 ZooKeeper 集群中 Leader 服务器是如何处理事务性的会话请求的,并且在处理完事务性的会话请求后,是如何通知其他角色服务器进行同步操作的。


可以说在 ZooKeeper 集群处理事务性的请过程中,Follow 和 Observer 服务器主要负责接收客户端的会话请求,并转发给 Leader 服务器。而真正处理该条会话请求的是 Leader 服务器。


这就会引发一个问题:当一个业务场景在查询操作多而创建删除等事务性操作少的情况下,ZooKeeper 集群的性能表现的就会很好。


而如果是在极端情况下,ZooKeeper 集群只有事务性的会话请求而没有查询操作,那么 Follow 和 Observer 服务器就只能充当一个请求转发服务器的角色, 所有的会话的处理压力都在 Leader 服务器。


在处理性能上整个集群服务器的瓶颈取决于 Leader 服务器的性能。ZooKeeper 集群的作用只能保证在 Leader 节点崩溃的时候,重新选举出 Leader 服务器保证系统的稳定性。这也是 ZooKeeper 设计的一个缺点。

相关文章
|
6月前
|
存储 SQL Apache
为什么 Apache Doris 是比 Elasticsearch 更好的实时分析替代方案?
本文将从技术选型的视角,从开放性、系统架构、实时写入、实时存储、实时查询等多方面,深入分析 Apache Doris 与 Elasticsearch 的能力差异及性能表现
469 17
为什么 Apache Doris 是比 Elasticsearch 更好的实时分析替代方案?
|
3月前
|
人工智能 运维 监控
Aipy实战:分析apache2日志中的网站攻击痕迹
Apache2日志系统灵活且信息全面,但安全分析、实时分析和合规性审计存在较高技术门槛。为降低难度,可借助AI工具如aipy高效分析日志,快速发现攻击痕迹并提供反制措施。通过结合AI与学习技术知识,新手运维人员能更轻松掌握复杂日志分析任务,提升工作效率与技能水平。
|
10月前
|
消息中间件 数据挖掘 Kafka
Apache Kafka流处理实战:构建实时数据分析应用
【10月更文挑战第24天】在当今这个数据爆炸的时代,能够快速准确地处理实时数据变得尤为重要。无论是金融交易监控、网络行为分析还是物联网设备的数据收集,实时数据处理技术都是不可或缺的一部分。Apache Kafka作为一款高性能的消息队列系统,不仅支持传统的消息传递模式,还提供了强大的流处理能力,能够帮助开发者构建高效、可扩展的实时数据分析应用。
471 5
|
10月前
|
存储 SQL Apache
Apache Doris 开源最顶级基于MPP架构的高性能实时分析数据库
Apache Doris 是一个基于 MPP 架构的高性能实时分析数据库,以其极高的速度和易用性著称。它支持高并发点查询和复杂分析场景,适用于报表分析、即席查询、数据仓库和数据湖查询加速等。最新发布的 2.0.2 版本在性能、稳定性和多租户支持方面有显著提升。社区活跃,已广泛应用于电商、广告、用户行为分析等领域。
Apache Doris 开源最顶级基于MPP架构的高性能实时分析数据库
|
10月前
|
监控 Cloud Native BI
8+ 典型分析场景,25+ 标杆案例,Apache Doris 和 SelectDB 精选案例集(2024版)电子版上线
飞轮科技正式推出 Apache Doris 和 SelectDB 精选案例集 ——《走向现代化的数据仓库(2024 版)》,汇聚了来自各行各业的成功案例与实践经验。该书以行业为划分标准,辅以使用场景标签,旨在为读者提供一个高度整合、全面涵盖、分类清晰且易于查阅的学习资源库。
353 8
|
11月前
|
存储 数据挖掘 数据处理
Apache Paimon 是一款高性能的数据湖框架,支持流式和批处理,适用于实时数据分析
【10月更文挑战第8天】随着数据湖技术的发展,越来越多企业开始利用这一技术优化数据处理。Apache Paimon 是一款高性能的数据湖框架,支持流式和批处理,适用于实时数据分析。本文分享了巴别时代在构建基于 Paimon 的 Streaming Lakehouse 的探索和实践经验,包括示例代码和实际应用中的优势与挑战。
460 1
|
11月前
|
消息中间件 druid 大数据
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(二)
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(二)
137 2
|
11月前
|
消息中间件 分布式计算 druid
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(一)
大数据-153 Apache Druid 案例 从 Kafka 中加载数据并分析(一)
169 1
|
11月前
|
分布式计算 负载均衡 算法
Hadoop-31 ZooKeeper 内部原理 简述Leader选举 ZAB协议 一致性
Hadoop-31 ZooKeeper 内部原理 简述Leader选举 ZAB协议 一致性
112 1
|
11月前
|
分布式计算 Hadoop
Hadoop-27 ZooKeeper集群 集群配置启动 3台云服务器 myid集群 zoo.cfg多节点配置 分布式协调框架 Leader Follower Observer
Hadoop-27 ZooKeeper集群 集群配置启动 3台云服务器 myid集群 zoo.cfg多节点配置 分布式协调框架 Leader Follower Observer
200 1

推荐镜像

更多