即插即用模块 | RFAConv助力YOLOv8再涨2个点(一)

简介: 即插即用模块 | RFAConv助力YOLOv8再涨2个点(一)

空间注意力已经被证明能够使卷积神经网络专注于关键信息来提高网络性能,但它仍然有局限性。

本文中从一个新的角度解释了空间注意力的有效性,即空间注意力机制本质上解决了卷积核参数共享的问题。然而,对于大尺寸卷积核,空间注意力生成的注意力图中包含的信息仍然缺乏。

因此,本文提出了一种新的注意力机制,称为感受野注意力(RFA)。卷积块注意力模块(CBAM)和协调注意力模块(CA)只关注空间特征,不能完全解决卷积核参数共享的问题,但在RFA中,感受野空间特征不仅集中,而且为大尺寸卷积核提供了良好的注意力权重。RFA设计的感受野注意力卷积运算(RFAConv)可以被认为是取代标准卷积的一种新方法,它带来的计算成本和许多参数几乎可以忽略不计。

在Imagenet-1k、MS COCO和VOC上的大量实验证明了本文方法在分类、目标检测和语义分割任务中的优越性能。重要的是,作者认为对于目前一些只关注空间特征的空间注意力机制,是时候通过关注感受野空间特征来提高网络的性能了。


1、简介


卷积神经网络通过使用具有共享参数的卷积运算显著降低了模型的计算开销和复杂性。在LeNet、AlexNet和VGG等经典网络的驱动下,卷积神经网络现在已经建立了一个完整的系统,并在深度学习领域形成了先进的卷积神经网络模型。

作者在仔细研究了卷积运算之后获得了灵感。对于分类、目标检测和语义分割任务,一方面,图像中不同位置的对象的形状、大小、颜色和分布是可变的。在卷积操作期间,卷积核在每个感受野中使用相同的参数来提取信息,而不考虑来自不同位置的差分信息。这限制了网络的性能,这已经在最近的许多工作中得到了证实。

另一方面,卷积运算没有考虑每个特征的重要性,这进一步影响了提取特征的有效性,并最终限制了模型的性能。此外,注意力机制允许模型专注于重要特征,这可以增强特征提取的优势和卷积神经网络捕获详细特征信息的能力。因此,注意力机制在深度学习中得到了广泛的应用,并成功地应用于各个领域。

通过研究卷积运算的内在缺陷和注意力机制的特点,作者认为现有的空间注意力机制从本质上解决了卷积运算的参数共享问题,但仍局限于对空间特征的认知。对于较大的卷积核,现有的空间注意力机制并没有完全解决共享参数的问题。此外,他们无法强调感受野中每个特征的重要性,例如现有的卷积块注意力模块(CBAM)和 Coordinate注意力(CA)。

因此,作者提出了一种新的感受野注意力机制(RFA),它完全解决了卷积核共享参数的问题,并充分考虑了感受野中每个特征的重要性。通过RFA设计的卷积运算(RFAConv)是一种新的卷积运算,可以取代现有神经网络中的标准卷积运算。RFAConv通过添加一些参数和计算开销来提高网络性能。

大量关于Imagnet-1k、MS COCO和VOC的实验已经证明了RFAConv的有效性。作为一种由注意力构建的新型卷积运算,它超过了由CAM、CBAM和CA构建的卷积运算(CAMConv、CBAMConv、CAConv)以及标准卷积运算。

此外,为了解决现有方法提取感受野特征速度慢的问题,提出了一种轻量级操作。在构建RFAConv的过程中,再次设计了CA和CBAM的升级版本,并进行了相关实验。作者认为当前的空间注意力机制应该将注意力放在感受野空间特征上,以促进当前空间注意力机制的发展,并再次增强卷积神经网络架构的优势。


2、相关工作


2.1、卷积神经网络架构

出色的神经网络架构可以提高不同任务的性能。卷积运算作为卷积神经网络的一种基本运算,推动了人工智能的发展,并为车辆检测、无人机图像、医学等先进的网络模型做出了贡献。He等人认为随着网络深度的增加,该模型将变得难以训练并产生退化现象,因此他们提出了残差连接来创新卷积神经网络架构的设计。Huang等人通过重用特征来解决网络梯度消失问题,增强了特征信息,他们再次创新了卷积神经网络架构。

通过对卷积运算的详细研究,Dai等人认为,具有固定采样位置的卷积运算在一定程度上限制了网络的性能,因此提出了Deformable Conv,通过学习偏移来改变卷积核的采样位置。在Deformable Conv的基础上,再次提出了Deformable Conv V2和Deformable Conv V3,以提高卷积网络的性能。

Zhang等人注意到,组卷积可以减少模型的参数数量和计算开销。然而,少于组内信息的交互将影响最终的网络性能。1×1的卷积可以与信息相互作用。然而,这将带来更多的参数和计算开销,因此他们提出了无参数的“通道Shuffle”操作来与组之间的信息交互。

Ma等人通过实验得出结论,对于参数较少的模型,推理速度不一定更快,对于计算量较小的模型,推理也不一定更快。经过仔细研究提出了Shufflenet V2。

YOLO将输入图像划分为网格,以预测对象的位置和类别。经过不断的研究,已经提出了8个版本的基于YOLO的目标检测器,如YOLOv5、YOLOv7、YOLOv8等。上述卷积神经网络架构已经取得了巨大的成功。然而,它们并没有解决提取特征过程中的参数共享问题。本文的工作从注意力机制开始,从一个新的角度解决卷积参数共享问题。

2.2、注意力机制

注意力机制被用作一种提高网络模型性能的技术,使其能够专注于关键特性。注意力机制理论已经在深度学习中建立了一个完整而成熟的体系。Hu等人提出了一种Squeeze-and-Excitation(SE)块,通过压缩特征来聚合全局通道信息,从而获得与每个通道对应的权重。Wang等人认为,当SE与信息交互时,单个通道和权重之间的对应关系是间接的,因此设计了高效通道注Efficient Channel Attention力(ECA),并用自适应kernel大小的一维卷积取代了SE中的全连接(FC)层。Woo等人提出了卷积块注意力模块(CBAM),它结合了通道注意力和空间注意力。作为一个即插即用模块,它可以嵌入卷积神经网络中,以提高网络性能。

尽管SE和CBAM已经提高了网络的性能。Hou等人仍然发现压缩特征在SE和CBAM中丢失了太多信息。因此,他们提出了轻量级Coordinate注意力(CA)来解决SE和CBAM中的问题。Fu等人计了一个空间注意力模块和通道注意力模块,用于扩展全卷积网络(FCN),分别对空间维度和通道维度的语义相关性进行建模。Zhang等人在通道上生成不同尺度的特征图,以建立更有效的通道注意力机制。

本文从一个新的角度解决了标准卷积运算的参数共享问题。这就是将注意力机制结合起来构造卷积运算。尽管目前的注意力机制已经获得了良好的性能,但它们仍然没有关注感受野的空间特征。因此,设计了具有非共享参数的RFA卷积运算,以提高网络的性能。


3、本文方法


3.1、回顾标准卷积

以标准卷积运算为基础构建卷积神经网络,通过共享参数的滑动窗口提取特征信息,解决了全连接层构建的神经网络的固有问题(即参数数量大、计算开销高)。

设表示输入特征图,其中、和分别表示特征图的通道数、高度和宽度。为了能够清楚地展示卷积核提取特征信息的过程,以为例。提取每个感受野slider的特征信息的卷积运算可以表示如下:

这里,表示在每次卷积slider操作之后获得的值,表示在每个slider内的相应位置处的像素值。表示卷积核,表示卷积核中的参数数量,表示感受野slider的总数。

可以看出,每个slider内相同位置的特征共享相同的参数。因此,标准的卷积运算无法感知不同位置带来的差异信息,这在一定程度上限制了卷积神经网络的性能。

3.2、回顾空间注意力

目前,空间注意力机制使用通过学习获得的注意力图来突出每个特征的重要性。与上一节类似,以为例。突出关键特征的空间注意力机制可以简单地表达如下:

这里,表示在加权运算之后获得的值。和分别表示输入特征图和学习注意力图在不同位置的值,是输入特征图的高度和宽度的乘积,表示像素值的总数。一般来说,整个过程可以简单地表示在图1中。

image.png

3.3、空间注意力与标准卷积

众所周知,将注意力机制引入卷积神经网络可以提高网络的性能。通过标准的卷积运算和对现有空间注意力机制的仔细分析。作者认为空间注意力机制本质上解决了卷积神经网络的固有缺点,即共享参数的问题。

目前,该模型最常见的卷积核大小为1×1和3×3。引入空间注意力机制后用于提取特征的卷积操作是1×1或3×3卷积操作。这个过程可以直观地显示出来。空间注意力机制被插入到1×1卷积运算的前面。通过注意力图对输入特征图进行加权运算(Re-weight“×”),最后通过1×1卷积运算提取感受野的slider特征信息。

整个过程可以简单地表示如下:

image.png

这里,卷积核仅表示一个参数值。如果将的值作为一个新的卷积核参数,那么有趣的是,通过1×1卷积运算提取特征时的参数共享问题得到了解决。然而,空间注意力机制的传说到此结束。当空间注意力机制被插入到3×3卷积运算的前面时。具体情况如下:

image.png

如上所述,如果取的值。作为一种新的卷积核参数,上述方程完全解决了大规模卷积核的参数共享问题。然而,最重要的一点是,卷积核在每个感受野slider中提取将共享部分特征的特征。换句话说,在每个感受野slider内都会有重叠。

经过仔细分析发现,,…,空间注意力图的权重在每个slider内共享。因此,空间注意机制不能解决大规模卷积核共享参数的问题,因为它们不注意感受野的空间特征。在这种情况下,空间注意力机制是有限的。

相关文章
|
8月前
|
机器学习/深度学习 算法 Python
【DYConv】CVPR2020 | 即插即用的动态卷积模块助力你涨点
【DYConv】CVPR2020 | 即插即用的动态卷积模块助力你涨点
860 1
【DYConv】CVPR2020 | 即插即用的动态卷积模块助力你涨点
|
2月前
|
机器学习/深度学习 计算机视觉 网络架构
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目DWRSeg是一种高效的实时语义分割网络,通过将多尺度特征提取分为区域残差化和语义残差化两步,提高了特征提取效率。它引入了Dilation-wise Residual (DWR) 和 Simple Inverted Residual (SIR) 模块,优化了不同网络阶段的感受野。在Cityscapes和CamVid数据集上的实验表明,DWRSeg在准确性和推理速度之间取得了最佳平衡,达到了72.7%的mIoU,每秒319.5帧。代码和模型已公开。
【YOLO11改进 - C3k2融合】C3k2DWRSeg二次创新C3k2_DWR:扩张式残差分割网络,提高特征提取效率和多尺度信息获取能力,助力小目标检测
|
8月前
|
计算机视觉
YOLOv5改进 | 2023 | DWRSeg扩张式残差助力小目标检测 (附修改后的C2f+Bottleneck)
YOLOv5改进 | 2023 | DWRSeg扩张式残差助力小目标检测 (附修改后的C2f+Bottleneck)
401 1
|
6月前
|
机器学习/深度学习 移动开发 自然语言处理
【YOLOv8改进- 多模块融合改进】GhostConv + ContextAggregation 幽灵卷积与上下文聚合模块融合改进,助力小目标高效涨点
【YOLOv8改进- 多模块融合改进】GhostConv + ContextAggregation 幽灵卷积与上下文聚合模块融合改进,助力小目标高效涨点
|
6月前
|
测试技术 计算机视觉 网络架构
【YOLOv8改进 - 特征融合】CARAFE:轻量级新型上采样算子,助力细节提升
【YOLOv8改进 - 特征融合】CARAFE:轻量级新型上采样算子,助力细节提升
|
8月前
|
机器学习/深度学习 数据挖掘 测试技术
DETR即插即用 | RefineBox进一步细化DETR家族的检测框,无痛涨点
DETR即插即用 | RefineBox进一步细化DETR家族的检测框,无痛涨点
410 1
|
8月前
|
机器学习/深度学习 并行计算
YOLOv8改进 | ODConv卷积助力极限涨点(附修改后的C2f、Bottleneck模块代码)
YOLOv8改进 | ODConv卷积助力极限涨点(附修改后的C2f、Bottleneck模块代码)
529 0
|
8月前
|
机器学习/深度学习 计算机视觉
YOLOv8改进 | 细节涨点篇 | UNetv2提出的一种SDI多层次特征融合模块(分割高效涨点)
YOLOv8改进 | 细节涨点篇 | UNetv2提出的一种SDI多层次特征融合模块(分割高效涨点)
813 2
|
8月前
|
机器学习/深度学习 编解码 自然语言处理
YOLOv5改进 | 主干篇 | RevColV1可逆列网络(特征解耦助力小目标检测)
YOLOv5改进 | 主干篇 | RevColV1可逆列网络(特征解耦助力小目标检测)
134 2
|
8月前
|
传感器 编解码 自动驾驶
即插即用 | Lite-FPN让CenterNet系列再涨4个点(3D检测也适用)
即插即用 | Lite-FPN让CenterNet系列再涨4个点(3D检测也适用)
246 0