【YOLOv8改进 - 注意力机制】ECA(Efficient Channel Attention):高效通道注意 模块,降低参数量

简介: YOLO目标检测专栏聚焦模型创新与实战,介绍了一种高效通道注意力模块(ECA),用于提升CNN性能。ECA仅用少量参数实现显著性能增益,避免了维度缩减,通过1D卷积进行局部跨通道交互。代码实现展示了一个ECA层的结构,该层在多种任务中展现优秀泛化能力,同时保持低模型复杂性。论文和代码链接分别指向arXiv与GitHub。更多详情可查阅CSDN博主shangyanaf的相关文章。

YOLO目标检测创新改进与实战案例专栏

专栏目录: YOLO有效改进系列及项目实战目录 包含卷积,主干 注意力,检测头等创新机制 以及 各种目标检测分割项目实战案例

专栏链接: YOLO基础解析+创新改进+实战案例

介绍

image-20240706222411142

摘要

最近,通道注意力机制在提升深度卷积神经网络(CNNs)性能方面展现了巨大潜力。然而,大多数现有方法致力于开发更复杂的注意力模块以获得更好的性能,这不可避免地增加了模型的复杂性。为了克服性能与复杂性权衡的矛盾,本文提出了一种高效通道注意力(ECA)模块,该模块只涉及少量参数,同时带来了显著的性能提升。通过剖析SENet中的通道注意力模块,我们实验证明,避免维度缩减对于学习通道注意力非常重要,适当的跨通道交互可以在显著降低模型复杂性的同时保持性能。因此,我们提出了一种无需维度缩减的局部跨通道交互策略,可以通过一维卷积高效实现。此外,我们开发了一种自适应选择一维卷积核大小的方法,确定局部跨通道交互的覆盖范围。所提出的ECA模块既高效又有效,例如,我们的模块与ResNet50主干网络的参数和计算量分别为80 vs. 24.37M和4.7e-4 GFLOPs vs. 3.86 GFLOPs,且Top-1准确率提升超过2%。我们在图像分类、目标检测和实例分割任务中广泛评估了ECA模块,使用了ResNets和MobileNetV2作为主干网络。实验结果表明,我们的模块在效率上更高,同时在性能上也优于同类方法。

文章链接

论文地址:论文地址

代码地址:代码地址

基本原理

  • ECA-Net(Efficient Channel Attention Network)是一种新颖的通道注意力机制,旨在通过最少的额外参数和计算成本来增强深度卷积神经网络(CNN)的性能。以下是关于ECA的一些关键点:

    1. 高效的通道注意力模块:ECA模块通过快速的1D卷积操作生成通道注意力。与一些现有的复杂设计的注意力机制不同,ECA以极其轻量的方式实现了有效的通道注意力 。

    2. 局部跨通道交互:ECA在不减少通道维度的情况下捕获跨通道交互。这种方法使ECA能够学习有效的通道注意力,同时保持轻量级模型 。

    3. 自适应核大小:ECA中1D卷积的核大小可以根据通道维度的非线性映射自适应确定。这种自适应核大小的选择有助于有效地捕获局部跨通道交互 。

    4. 性能提升:ECA-Net已被证明在诸如图像分类和目标检测等任务中优于基线模型如ResNet。例如,ECA-Net50在Top-1准确率上比ResNet-50提高了2.28%,同时额外参数和计算量极少 。

    5. 模型复杂性:尽管性能提升,ECA-Net的模型复杂性低于其他最先进的CNN架构,如ResNeXt和DenseNet。这使得ECA成为各种CNN模型的有前景的补充 。

    6. 泛化能力:ECA-Net在目标检测和实例分割等任务中展现出良好的泛化能力。其轻量级设计和高效性使其成为改善不同CNN架构性能的有价值选择 。

      核心代码

import torch
from torch import nn
from torch.nn.parameter import Parameter

class eca_layer(nn.Module):
    """构建一个ECA模块。

    Args:
        channel: 输入特征图的通道数
        k_size: 自适应选择的卷积核大小
    """
    def __init__(self, channel, k_size=3):
        super(eca_layer, self).__init__()
        self.avg_pool = nn.AdaptiveAvgPool2d(1)
        self.conv = nn.Conv1d(1, 1, kernel_size=k_size, padding=(k_size - 1) // 2, bias=False)
        self.sigmoid = nn.Sigmoid()

task与yaml配置

详见: https://blog.csdn.net/shangyanaf/article/details/140336733

相关文章
|
6月前
|
机器学习/深度学习
YOLOv8改进 | 2023注意力篇 | MLCA混合局部通道注意力(轻量化注意力机制)
YOLOv8改进 | 2023注意力篇 | MLCA混合局部通道注意力(轻量化注意力机制)
365 1
|
6月前
|
机器学习/深度学习
YOLOv5改进 | 2023注意力篇 | MLCA混合局部通道注意力(轻量化注意力机制)
YOLOv5改进 | 2023注意力篇 | MLCA混合局部通道注意力(轻量化注意力机制)
406 0
|
16天前
|
机器学习/深度学习 计算机视觉
【YOLOv11改进 - 注意力机制】GAM(Global Attention Mechanism):全局注意力机制,减少信息损失并放大全局维度交互特征
【YOLOv11改进 - 注意力机制】GAM(Global Attention Mechanism):全局注意力机制,减少信息损失并放大全局维度交互特征本文提出了一种全局注意力机制,通过保留通道和空间信息,增强跨维度的交互,减少信息损失。该机制结合3D置换与多层感知器用于通道注意力,卷积空间注意力子模块用于空间注意力。实验结果表明,在CIFAR-100和ImageNet-1K数据集上,该方法在ResNet和MobileNet上优于多种最新注意力机制。
【YOLOv11改进 - 注意力机制】GAM(Global Attention Mechanism):全局注意力机制,减少信息损失并放大全局维度交互特征
|
5月前
|
机器学习/深度学习 存储 编解码
Tiny Time Mixers (TTM)轻量级时间序列基础模型:无需注意力机制,并且在零样本预测方面表现出色
IBM研究人员提出Tiny Time Mixers (TTM),这是一个轻量级、基于mlp的TS模型,参数量小于1M,在M4数据集上表现优于大型SOTA模型,且具备优秀的零样本预测能力。TTM无注意力机制,利用TSMixer进行多级建模,自适应补丁和频率前缀调整等创新特性提升性能。预训练和微调阶段各有独特设计,预训练仅用单变量序列,微调时学习多变量依赖。TTM在某些任务中证明了小模型的优越性,且模型已开源。
249 1
|
16天前
|
机器学习/深度学习 计算机视觉 Python
【YOLOv11改进 - 注意力机制】EMA(Efficient Multi-Scale Attention):基于跨空间学习的高效多尺度注意力
【YOLOv11改进 - 注意力机制】EMA(Efficient Multi-Scale Attention):基于跨空间学习的高效多尺度注意力.EMA(Efficient Multi-Scale Attention)模块是一种高效多尺度注意力机制,旨在提高计算机视觉任务中的特征表示效果。该模块通过结合通道和空间信息、采用多尺度并行子网络结构以及优化坐标注意力机制,实现了更高效和有效的特征表示。EMA模块在图像分类和目标检测任务中表现出色,使用CIFAR-100、ImageNet-1k、MS COCO和VisDrone2019等数据集进行了广泛测试。
【YOLOv11改进 - 注意力机制】EMA(Efficient Multi-Scale Attention):基于跨空间学习的高效多尺度注意力
|
16天前
|
机器学习/深度学习 编解码 算法
【YOLOv11改进 - 注意力机制】MLCA(Mixed local channel attention):混合局部通道注意力
【YOLOv11改进 - 注意力机制】MLCA(Mixed local channel attention):混合局部通道注意力本项目提出了一种轻量级的 Mixed Local Channel Attention (MLCA) 模块,结合通道信息和空间信息,提升网络表达效果。基于此模块,开发了 MobileNet-Attention-YOLO (MAY) 算法,在 Pascal VOC 和 SMID 数据集上表现优异,mAP 分别提高了 1.0% 和 1.5%。MLCA 通过局部池化、一维卷积和信息融合,有效捕获局部和全局信息。项目代码和详细配置可在 GitHub 和 CSDN 获取。
|
4月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【YOLOv8改进 - 注意力机制】GAM(Global Attention Mechanism):全局注意力机制,减少信息损失并放大全局维度交互特征
YOLO目标检测专栏探讨了模型创新,如注意力机制,聚焦通道和空间信息的全局注意力模组(GAM),提升DNN性能。GAM在ResNet和MobileNet上优于最新方法。论文及PyTorch代码可在给出的链接找到。核心代码展示了GAM的构建,包含线性层、卷积和Sigmoid激活,用于生成注意力图。更多配置详情参阅相关博客文章。
【YOLOv8改进 - 注意力机制】GAM(Global Attention Mechanism):全局注意力机制,减少信息损失并放大全局维度交互特征
|
4月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进 - 注意力机制】SENetV2: 用于通道和全局表示的聚合稠密层,结合SE模块和密集层来增强特征表示
【YOLOv8改进 - 注意力机制】SENetV2: 用于通道和全局表示的聚合稠密层,结合SE模块和密集层来增强特征表示
|
4月前
|
机器学习/深度学习 算法 计算机视觉
【YOLOv8改进 - 注意力机制】RCS-OSA :减少通道的空间对象注意力,高效且涨点
YOLOv8专栏探讨了YOLO系列的创新改进,提出RCS-YOLO模型,它在脑肿瘤检测中超越YOLOv6/v7/v8,精度提升1%,速度增快60%(达到114.8 FPS)。RCS-OSA模块结合RepVGG/ShuffleNet优点,通过通道重参数化和混洗优化卷积,提升速度和准确性。代码和论文可在提供的链接获取。
|
4月前
|
机器学习/深度学习 计算机视觉
【YOLOv8改进 - 注意力机制】Gather-Excite : 提高网络捕获长距离特征交互的能力
【YOLOv8改进 - 注意力机制】Gather-Excite : 提高网络捕获长距离特征交互的能力