Gradio机器学习模型快速部署工具【接口状态】翻译5

简介: Gradio机器学习模型快速部署工具【接口状态】翻译5

原文: gradio.app/interface-s…


1.全局状态


例子来解释


import gradio as gr
scores = []
def track_score(score):
    scores.append(score)
    top_scores = sorted(scores, reverse=True)[:3]
    return top_scores
demo = gr.Interface(
    track_score, 
    gr.Number(label="Score"), 
    gr.JSON(label="Top Scores")
)
demo.launch()

如上所述,scores,就可以在某函数中访问。

  • 多用户访问,每次访问的分数都保存到scores列表
  • 并并返回前三的分数


2.会话状态


Gradio 支持的另一种数据持久化类型是会话状态,其中数据在页面会话中跨多个提交持久化。但是,数据_不会_在模型的不同用户之间共享。要在会话状态中存储数据,您需要做三件事:

  1. 将一个额外的参数传递到您的函数中,该参数表示界面的状态。
  2. 在函数结束时,返回状态的更新值作为额外的返回值。
  3. 创建时添加'state'输入和输出组件'state'``Interface

聊天机器人是一个您需要会话状态的示例 - 您想要访问用户以前提交的内容,但您不能将聊天历史存储在全局变量中,因为那样聊天历史会在不同用户之间混乱。


import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
def user(message, history):
    return "", history + [[message, None]]
#     bot_message = random.choice(["Yes", "No"])
#     history[-1][1] = bot_message
#     time.sleep(1)
#     return history
# def predict(input, history=[]):
#     # tokenize the new input sentence
def bot(history):
    user_message = history[-1][0]
    new_user_input_ids = tokenizer.encode(user_message + tokenizer.eos_token, return_tensors='pt')
    # append the new user input tokens to the chat history
    bot_input_ids = torch.cat([torch.LongTensor(history), new_user_input_ids], dim=-1)
    # generate a response 
    history = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id).tolist()
    # convert the tokens to text, and then split the responses into lines
    response = tokenizer.decode(history[0]).split("<|endoftext|>")
    response = [(response[i], response[i+1]) for i in range(0, len(response)-1, 2)]  # convert to tuples of list
    return history
with gr.Blocks() as demo:
    chatbot = gr.Chatbot()
    msg = gr.Textbox()
    clear = gr.Button("Clear")
    msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
        bot, chatbot, chatbot
    )
    clear.click(lambda: None, None, chatbot, queue=False)
demo.launch()

image.png



目录
相关文章
|
10天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的线性回归模型
本文深入探讨了机器学习中广泛使用的线性回归模型,从其基本概念和数学原理出发,逐步引导读者理解模型的构建、训练及评估过程。通过实例分析与代码演示,本文旨在为初学者提供一个清晰的学习路径,帮助他们在实践中更好地应用线性回归模型解决实际问题。
|
19天前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?
|
16天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
51 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
20天前
|
机器学习/深度学习 算法 PyTorch
用Python实现简单机器学习模型:以鸢尾花数据集为例
用Python实现简单机器学习模型:以鸢尾花数据集为例
46 1
|
29天前
|
机器学习/深度学习 数据采集 Python
从零到一:手把手教你完成机器学习项目,从数据预处理到模型部署全攻略
【10月更文挑战第25天】本文通过一个预测房价的案例,详细介绍了从数据预处理到模型部署的完整机器学习项目流程。涵盖数据清洗、特征选择与工程、模型训练与调优、以及使用Flask进行模型部署的步骤,帮助读者掌握机器学习的最佳实践。
74 1
|
1月前
|
机器学习/深度学习 数据采集 监控
如何使用机器学习模型来自动化评估数据质量?
如何使用机器学习模型来自动化评估数据质量?
|
2月前
|
机器学习/深度学习 并行计算 数据挖掘
R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域
【10月更文挑战第21天】R语言是一种强大的统计分析工具,广泛应用于数据分析和机器学习领域。本文将介绍R语言中的一些高级编程技巧,包括函数式编程、向量化运算、字符串处理、循环和条件语句、异常处理和性能优化等方面,以帮助读者更好地掌握R语言的编程技巧,提高数据分析的效率。
44 2
|
14天前
|
机器学习/深度学习 自然语言处理 语音技术
探索机器学习中的深度学习模型:原理与应用
探索机器学习中的深度学习模型:原理与应用
28 0
|
2月前
|
人工智能 算法 测试技术
PAI 大语言模型评测平台现已支持裁判员模型评测
本文将为您介绍如何在 PAI 大语言模型评测平台,基于裁判员模型,评价开源模型或者微调后模型的性能。该功能限时免费,欢迎使用。
|
25天前
|
机器学习/深度学习 算法
探索机器学习模型的可解释性
【10月更文挑战第29天】在机器学习领域,一个关键议题是模型的可解释性。本文将通过简单易懂的语言和实例,探讨如何理解和评估机器学习模型的决策过程。我们将从基础概念入手,逐步深入到更复杂的技术手段,旨在为非专业人士提供一扇洞悉机器学习黑箱的窗口。