白话Elasticsearch23-深度探秘搜索技术之通过ngram分词机制实现index-time搜索推荐

简介: 白话Elasticsearch23-深度探秘搜索技术之通过ngram分词机制实现index-time搜索推荐

20190806092132811.jpg

概述


继续跟中华石杉老师学习ES,第23篇

课程地址: https://www.roncoo.com/view/55


官网


NGram Tokenizer

https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-ngram-tokenizer.html

2019080200262035.png


NGram Token Filter:

https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-ngram-tokenfilter.html


20190802002340531.png

Edge NGram Tokenizer:

https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-edgengram-tokenizer.html

20190802002552889.png


Edge NGram Token Filter:

https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-edgengram-tokenfilter.html


20190802002534115.png

什么是ngram

什么是ngram

假设有个单词quick,5种长度下的ngram

ngram length=1,会被拆成 q u i c k
ngram length=2,会被拆成 qu ui ic ck
ngram length=3,会被拆成 qui uic ick
ngram length=4,会被拆成 quic uick
ngram length=5,会被拆成 quick


其中任意一个被拆分的部分 就被称为ngram 。


什么是edge ngram

quick,anchor首字母后进行ngram

q
qu
qui
quic
quick


上述拆分方式就被称为edge ngram


使用edge ngram将每个单词都进行进一步的分词切分,用切分后的ngram来实现前缀搜索推荐功能

举个例子 两个doc

doc1 hello world

doc2 hello we


使用edge ngram拆分


h

he

hel

hell

hello -------> 可以匹配 doc1,doc2


w -------> 可以匹配 doc1,doc2

wo

wor

worl

world

e ---------> 可以匹配 doc2


使用hello w去搜索

hello --> hello,doc1

w --> w,doc1

doc1中hello和w,而且position也匹配,所以,ok,doc1返回,hello world


ngram和index-time搜索推荐原理


搜索的时候,不用再根据一个前缀,然后扫描整个倒排索引了,而是简单的拿前缀去倒排索引中匹配即可,如果匹配上了,那么就好了,就和match query全文检索一样


例子

PUT /my_index
{
    "settings": {
        "analysis": {
            "filter": {
                "autocomplete_filter": { 
                    "type":     "edge_ngram",
                    "min_gram": 1,
                    "max_gram": 20
                }
            },
            "analyzer": {
                "autocomplete": {
                    "type":      "custom",
                    "tokenizer": "standard",
                    "filter": [
                        "lowercase",
                        "autocomplete_filter" 
                    ]
                }
            }
        }
    }
}


helloworld

设置

min ngram = 1
max ngram = 3

使用edge_ngram ,则会被拆分为一下 ,

h
he
hel



20190802010143522.png



知识点: autocomplete

https://www.elastic.co/guide/en/elasticsearch/reference/current/search-analyzer.html

20190802002821910.png


GET /my_index/_analyze
{
  "analyzer": "autocomplete",
  "text": "helll world"
}

20190802005453978.png

设置mapping , 查询的时候还是使用standard

PUT /my_index/_mapping/my_type
{
  "properties": {
      "title": {
          "type":     "text",
          "analyzer": "autocomplete",
          "search_analyzer": "standard"
      }
  }
}


造数据

PUT /my_index/my_type/1
{
  "content":"hello Jack"
}
PUT /my_index/my_type/2
{
  "content":"hello John"
}
PUT /my_index/my_type/3
{
  "content":"hello Jose"
}

查询

GET /my_index/my_type/_search 
{
  "query": {
    "match": {
      "content": "hello J"
    }
  }
}

返回:

{
  "took": 7,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 3,
    "max_score": 0.2876821,
    "hits": [
      {
        "_index": "my_index",
        "_type": "my_type",
        "_id": "2",
        "_score": 0.2876821,
        "_source": {
          "content": "hello John"
        }
      },
      {
        "_index": "my_index",
        "_type": "my_type",
        "_id": "1",
        "_score": 0.2876821,
        "_source": {
          "content": "hello Jack"
        }
      },
      {
        "_index": "my_index",
        "_type": "my_type",
        "_id": "3",
        "_score": 0.2876821,
        "_source": {
          "content": "hello Jose"
        }
      }
    ]
  }
}



  • 如果用match,只有hello的也会出来,全文检索,只是分数比较低
  • 推荐使用match_phrase,要求每个term都有,而且position刚好靠着1位,符合我们的期望的
相关实践学习
以电商场景为例搭建AI语义搜索应用
本实验旨在通过阿里云Elasticsearch结合阿里云搜索开发工作台AI模型服务,构建一个高效、精准的语义搜索系统,模拟电商场景,深入理解AI搜索技术原理并掌握其实现过程。
ElasticSearch 最新快速入门教程
本课程由千锋教育提供。全文搜索的需求非常大。而开源的解决办法Elasricsearch(Elastic)就是一个非常好的工具。目前是全文搜索引擎的首选。本系列教程由浅入深讲解了在CentOS7系统下如何搭建ElasticSearch,如何使用Kibana实现各种方式的搜索并详细分析了搜索的原理,最后讲解了在Java应用中如何集成ElasticSearch并实现搜索。  
相关文章
|
2月前
|
缓存 监控 前端开发
顺企网 API 开发实战:搜索 / 详情接口从 0 到 1 落地(附 Elasticsearch 优化 + 错误速查)
企业API开发常陷参数、缓存、错误处理三大坑?本指南拆解顺企网双接口全流程,涵盖搜索优化、签名验证、限流应对,附可复用代码与错误速查表,助你2小时高效搞定开发,提升响应速度与稳定性。
|
2月前
|
存储 Linux iOS开发
Elasticsearch Enterprise 9.1.5 发布 - 分布式搜索和分析引擎
Elasticsearch Enterprise 9.1.5 (macOS, Linux, Windows) - 分布式搜索和分析引擎
319 0
|
3月前
|
JSON 监控 Java
Elasticsearch 分布式搜索与分析引擎技术详解与实践指南
本文档全面介绍 Elasticsearch 分布式搜索与分析引擎的核心概念、架构设计和实践应用。作为基于 Lucene 的分布式搜索引擎,Elasticsearch 提供了近实时的搜索能力、强大的数据分析功能和可扩展的分布式架构。本文将深入探讨其索引机制、查询 DSL、集群管理、性能优化以及与各种应用场景的集成,帮助开发者构建高性能的搜索和分析系统。
328 0
|
7月前
|
存储 安全 Linux
Elasticsearch Enterprise 9.0 发布 - 分布式搜索和分析引擎
Elasticsearch Enterprise 9.0 (macOS, Linux, Windows) - 分布式搜索和分析引擎
332 0
|
7月前
|
存储 Linux iOS开发
Elasticsearch Enterprise 8.18 发布 - 分布式搜索和分析引擎
Elasticsearch Enterprise 8.18 (macOS, Linux, Windows) - 分布式搜索和分析引擎
294 0
|
11月前
|
人工智能 自然语言处理 搜索推荐
云端问道12期实操教学-构建基于Elasticsearch的企业级AI搜索应用
本文介绍了构建基于Elasticsearch的企业级AI搜索应用,涵盖了从传统关键词匹配到对话式问答的搜索形态演变。阿里云的AI搜索产品依托自研和开源(如Elasticsearch)引擎,提供高性能检索服务,支持千亿级数据毫秒响应。文章重点描述了AI搜索的三个核心关键点:精准结果、语义理解、高性能引擎,并展示了架构升级和典型应用场景,包括智能问答、电商导购、多模态图书及商品搜索等。通过实验部分,详细演示了如何使用阿里云ES搭建AI语义搜索Demo,涵盖模型创建、Pipeline配置、数据写入与检索测试等步骤,同时介绍了相关的计费模式。
383 3
|
11月前
|
人工智能 算法 API
构建基于 Elasticsearch 的企业级 AI 搜索应用
本文介绍了基于Elasticsearch构建企业级AI搜索应用的方案,重点讲解了RAG(检索增强生成)架构的实现。通过阿里云上的Elasticsearch AI搜索平台,简化了知识库文档抽取、文本切片等复杂流程,并结合稠密和稀疏向量的混合搜索技术,提升了召回和排序的准确性。此外,还探讨了Elastic的向量数据库优化措施及推理API的应用,展示了如何在云端高效实现精准的搜索与推理服务。未来将拓展至多模态数据和知识图谱,进一步提升RAG效果。
435 1
|
8月前
|
安全 Java Linux
Linux安装Elasticsearch详细教程
Linux安装Elasticsearch详细教程
1566 64
|
7月前
|
JSON 安全 数据可视化
Elasticsearch(es)在Windows系统上的安装与部署(含Kibana)
Kibana 是 Elastic Stack(原 ELK Stack)中的核心数据可视化工具,主要与 Elasticsearch 配合使用,提供强大的数据探索、分析和展示功能。elasticsearch安装在windows上一般是zip文件,解压到对应目录。文件,elasticsearch8.x以上版本是自动开启安全认证的。kibana安装在windows上一般是zip文件,解压到对应目录。elasticsearch的默认端口是9200,访问。默认用户是elastic,密码需要重置。
3893 0
|
存储 安全 数据管理
如何在 Rocky Linux 8 上安装和配置 Elasticsearch
本文详细介绍了在 Rocky Linux 8 上安装和配置 Elasticsearch 的步骤,包括添加仓库、安装 Elasticsearch、配置文件修改、设置内存和文件描述符、启动和验证 Elasticsearch,以及常见问题的解决方法。通过这些步骤,你可以快速搭建起这个强大的分布式搜索和分析引擎。
485 5

热门文章

最新文章